Cargando…
Dam deformation forecasting using SVM-DEGWO algorithm based on phase space reconstruction
A hybrid model integrating chaos theory, support vector machine (SVM) and the difference evolution grey wolf optimization (DEGWO) algorithm is developed to analyze and predict dam deformation. Firstly, the chaotic characteristics of the dam deformation time series will be identified, mainly using th...
Autores principales: | Li, Mingjun, Pan, Jiangyang, Liu, Yaolai, Wang, Yazhou, Zhang, Wenchuan, Wang, Junxing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9159622/ https://www.ncbi.nlm.nih.gov/pubmed/35648775 http://dx.doi.org/10.1371/journal.pone.0267434 |
Ejemplares similares
-
Geodetic and Remote-Sensing Sensors for Dam Deformation Monitoring
por: Scaioni, Marco, et al.
Publicado: (2018) -
Data on Support Vector Machines (SVM) model to forecast photovoltaic power
por: Malvoni, M., et al.
Publicado: (2016) -
SVM2Motif—Reconstructing Overlapping DNA Sequence Motifs by Mimicking an SVM Predictor
por: Vidovic, Marina M. -C., et al.
Publicado: (2015) -
MD-SVM: a novel SVM-based algorithm for the motif discovery of transcription factor binding sites
por: Hu, Jialu, et al.
Publicado: (2019) -
Forecasting the Mechanical Properties of Plastic Concrete Employing Experimental Data Using Machine Learning Algorithms: DT, MLPNN, SVM, and RF
por: Nafees, Afnan, et al.
Publicado: (2022)