Cargando…
A novel membrane complex is required for docking and regulated exocytosis of lysosome-related organelles in Tetrahymena thermophila
In the ciliate Tetrahymena thermophila, lysosome-related organelles called mucocysts accumulate at the cell periphery where they secrete their contents in response to extracellular events, a phenomenon called regulated exocytosis. The molecular bases underlying regulated exocytosis have been extensi...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9159632/ https://www.ncbi.nlm.nih.gov/pubmed/35587496 http://dx.doi.org/10.1371/journal.pgen.1010194 |
_version_ | 1784719097357926400 |
---|---|
author | Kuppannan, Aarthi Jiang, Yu-Yang Maier, Wolfgang Liu, Chang Lang, Charles F. Cheng, Chao-Yin Field, Mark C. Zhao, Minglei Zoltner, Martin Turkewitz, Aaron P. |
author_facet | Kuppannan, Aarthi Jiang, Yu-Yang Maier, Wolfgang Liu, Chang Lang, Charles F. Cheng, Chao-Yin Field, Mark C. Zhao, Minglei Zoltner, Martin Turkewitz, Aaron P. |
author_sort | Kuppannan, Aarthi |
collection | PubMed |
description | In the ciliate Tetrahymena thermophila, lysosome-related organelles called mucocysts accumulate at the cell periphery where they secrete their contents in response to extracellular events, a phenomenon called regulated exocytosis. The molecular bases underlying regulated exocytosis have been extensively described in animals but it is not clear whether similar mechanisms exist in ciliates or their sister lineage, the Apicomplexan parasites, which together belong to the ecologically and medically important superphylum Alveolata. Beginning with a T. thermophila mutant in mucocyst exocytosis, we used a forward genetic approach to uncover MDL1 (Mucocyst Discharge with a LamG domain), a novel gene that is essential for regulated exocytosis of mucocysts. Mdl1p is a 40 kDa membrane glycoprotein that localizes to mucocysts, and specifically to a tip domain that contacts the plasma membrane when the mucocyst is docked. This sub-localization of Mdl1p, which occurs prior to docking, underscores a functional asymmetry in mucocysts that is strikingly similar to that of highly polarized secretory organelles in other Alveolates. A mis-sense mutation in the LamG domain results in mucocysts that dock but only undergo inefficient exocytosis. In contrast, complete knockout of MDL1 largely prevents mucocyst docking itself. Mdl1p is physically associated with 9 other proteins, all of them novel and largely restricted to Alveolates, and sedimentation analysis supports the idea that they form a large complex. Analysis of three other members of this putative complex, called MDD (for Mucocyst Docking and Discharge), shows that they also localize to mucocysts. Negative staining of purified MDD complexes revealed distinct particles with a central channel. Our results uncover a novel macromolecular complex whose subunits are conserved within alveolates but not in other lineages, that is essential for regulated exocytosis in T. thermophila. |
format | Online Article Text |
id | pubmed-9159632 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-91596322022-06-02 A novel membrane complex is required for docking and regulated exocytosis of lysosome-related organelles in Tetrahymena thermophila Kuppannan, Aarthi Jiang, Yu-Yang Maier, Wolfgang Liu, Chang Lang, Charles F. Cheng, Chao-Yin Field, Mark C. Zhao, Minglei Zoltner, Martin Turkewitz, Aaron P. PLoS Genet Research Article In the ciliate Tetrahymena thermophila, lysosome-related organelles called mucocysts accumulate at the cell periphery where they secrete their contents in response to extracellular events, a phenomenon called regulated exocytosis. The molecular bases underlying regulated exocytosis have been extensively described in animals but it is not clear whether similar mechanisms exist in ciliates or their sister lineage, the Apicomplexan parasites, which together belong to the ecologically and medically important superphylum Alveolata. Beginning with a T. thermophila mutant in mucocyst exocytosis, we used a forward genetic approach to uncover MDL1 (Mucocyst Discharge with a LamG domain), a novel gene that is essential for regulated exocytosis of mucocysts. Mdl1p is a 40 kDa membrane glycoprotein that localizes to mucocysts, and specifically to a tip domain that contacts the plasma membrane when the mucocyst is docked. This sub-localization of Mdl1p, which occurs prior to docking, underscores a functional asymmetry in mucocysts that is strikingly similar to that of highly polarized secretory organelles in other Alveolates. A mis-sense mutation in the LamG domain results in mucocysts that dock but only undergo inefficient exocytosis. In contrast, complete knockout of MDL1 largely prevents mucocyst docking itself. Mdl1p is physically associated with 9 other proteins, all of them novel and largely restricted to Alveolates, and sedimentation analysis supports the idea that they form a large complex. Analysis of three other members of this putative complex, called MDD (for Mucocyst Docking and Discharge), shows that they also localize to mucocysts. Negative staining of purified MDD complexes revealed distinct particles with a central channel. Our results uncover a novel macromolecular complex whose subunits are conserved within alveolates but not in other lineages, that is essential for regulated exocytosis in T. thermophila. Public Library of Science 2022-05-19 /pmc/articles/PMC9159632/ /pubmed/35587496 http://dx.doi.org/10.1371/journal.pgen.1010194 Text en © 2022 Kuppannan et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Kuppannan, Aarthi Jiang, Yu-Yang Maier, Wolfgang Liu, Chang Lang, Charles F. Cheng, Chao-Yin Field, Mark C. Zhao, Minglei Zoltner, Martin Turkewitz, Aaron P. A novel membrane complex is required for docking and regulated exocytosis of lysosome-related organelles in Tetrahymena thermophila |
title | A novel membrane complex is required for docking and regulated exocytosis of lysosome-related organelles in Tetrahymena thermophila |
title_full | A novel membrane complex is required for docking and regulated exocytosis of lysosome-related organelles in Tetrahymena thermophila |
title_fullStr | A novel membrane complex is required for docking and regulated exocytosis of lysosome-related organelles in Tetrahymena thermophila |
title_full_unstemmed | A novel membrane complex is required for docking and regulated exocytosis of lysosome-related organelles in Tetrahymena thermophila |
title_short | A novel membrane complex is required for docking and regulated exocytosis of lysosome-related organelles in Tetrahymena thermophila |
title_sort | novel membrane complex is required for docking and regulated exocytosis of lysosome-related organelles in tetrahymena thermophila |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9159632/ https://www.ncbi.nlm.nih.gov/pubmed/35587496 http://dx.doi.org/10.1371/journal.pgen.1010194 |
work_keys_str_mv | AT kuppannanaarthi anovelmembranecomplexisrequiredfordockingandregulatedexocytosisoflysosomerelatedorganellesintetrahymenathermophila AT jiangyuyang anovelmembranecomplexisrequiredfordockingandregulatedexocytosisoflysosomerelatedorganellesintetrahymenathermophila AT maierwolfgang anovelmembranecomplexisrequiredfordockingandregulatedexocytosisoflysosomerelatedorganellesintetrahymenathermophila AT liuchang anovelmembranecomplexisrequiredfordockingandregulatedexocytosisoflysosomerelatedorganellesintetrahymenathermophila AT langcharlesf anovelmembranecomplexisrequiredfordockingandregulatedexocytosisoflysosomerelatedorganellesintetrahymenathermophila AT chengchaoyin anovelmembranecomplexisrequiredfordockingandregulatedexocytosisoflysosomerelatedorganellesintetrahymenathermophila AT fieldmarkc anovelmembranecomplexisrequiredfordockingandregulatedexocytosisoflysosomerelatedorganellesintetrahymenathermophila AT zhaominglei anovelmembranecomplexisrequiredfordockingandregulatedexocytosisoflysosomerelatedorganellesintetrahymenathermophila AT zoltnermartin anovelmembranecomplexisrequiredfordockingandregulatedexocytosisoflysosomerelatedorganellesintetrahymenathermophila AT turkewitzaaronp anovelmembranecomplexisrequiredfordockingandregulatedexocytosisoflysosomerelatedorganellesintetrahymenathermophila AT kuppannanaarthi novelmembranecomplexisrequiredfordockingandregulatedexocytosisoflysosomerelatedorganellesintetrahymenathermophila AT jiangyuyang novelmembranecomplexisrequiredfordockingandregulatedexocytosisoflysosomerelatedorganellesintetrahymenathermophila AT maierwolfgang novelmembranecomplexisrequiredfordockingandregulatedexocytosisoflysosomerelatedorganellesintetrahymenathermophila AT liuchang novelmembranecomplexisrequiredfordockingandregulatedexocytosisoflysosomerelatedorganellesintetrahymenathermophila AT langcharlesf novelmembranecomplexisrequiredfordockingandregulatedexocytosisoflysosomerelatedorganellesintetrahymenathermophila AT chengchaoyin novelmembranecomplexisrequiredfordockingandregulatedexocytosisoflysosomerelatedorganellesintetrahymenathermophila AT fieldmarkc novelmembranecomplexisrequiredfordockingandregulatedexocytosisoflysosomerelatedorganellesintetrahymenathermophila AT zhaominglei novelmembranecomplexisrequiredfordockingandregulatedexocytosisoflysosomerelatedorganellesintetrahymenathermophila AT zoltnermartin novelmembranecomplexisrequiredfordockingandregulatedexocytosisoflysosomerelatedorganellesintetrahymenathermophila AT turkewitzaaronp novelmembranecomplexisrequiredfordockingandregulatedexocytosisoflysosomerelatedorganellesintetrahymenathermophila |