Cargando…
Medical Image Segmentation Using Transformer Networks
Deep learning models represent the state of the art in medical image segmentation. Most of these models are fully-convolutional networks (FCNs), namely each layer processes the output of the preceding layer with convolution operations. The convolution operation enjoys several important properties su...
Autores principales: | KARIMI, DAVOOD, DOU, HAORAN, GHOLIPOUR, ALI |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9159704/ https://www.ncbi.nlm.nih.gov/pubmed/35656515 http://dx.doi.org/10.1109/access.2022.3156894 |
Ejemplares similares
-
Direct segmentation of brain white matter tracts in diffusion MRI
por: Kebiri, Hamza, et al.
Publicado: (2023) -
Semantic segmentation in medical images through transfused convolution and transformer networks
por: Dhamija, Tashvik, et al.
Publicado: (2022) -
TBSS++: A novel computational method for Tract-Based Spatial Statistics
por: Karimi, Davood, et al.
Publicado: (2023) -
Optimization of U-shaped pure transformer medical image segmentation network
por: Dan, Yongping, et al.
Publicado: (2023) -
Detailed anatomic segmentations of a fetal brain diffusion tensor imaging atlas between 23 and 30 weeks of gestation
por: Calixto, Camilo, et al.
Publicado: (2022)