Cargando…
Modeling mutational effects on biochemical phenotypes using convolutional neural networks: application to SARS-CoV-2
Deep mutational scanning (DMS) experiments have been performed on SARS-CoV-2’s spike receptor-binding domain (RBD) and human angiotensin-converting enzyme 2 (ACE2) zinc-binding peptidase domain—both central players in viral infection and evolution and antibody evasion—quantifying how mutations impac...
Autores principales: | Wang, Bo, Gamazon, Eric R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9159778/ https://www.ncbi.nlm.nih.gov/pubmed/35669036 http://dx.doi.org/10.1016/j.isci.2022.104500 |
Ejemplares similares
-
Modeling mutational effects on biochemical phenotypes using convolutional neural networks: application to SARS-CoV-2
por: Wang, Bo, et al.
Publicado: (2021) -
Convolutional Neural Network Applied to SARS-CoV-2 Sequence Classification
por: Câmara, Gabriel B. M., et al.
Publicado: (2022) -
Prediction of Recurrent Mutations in SARS-CoV-2 Using Artificial Neural Networks
por: Saldivar-Espinoza, Bryan, et al.
Publicado: (2022) -
Convolutional Neural Networks Based on Sequential Spike Predict the High Human Adaptation of SARS-CoV-2 Omicron Variants
por: Nan, Bei-Guang, et al.
Publicado: (2022) -
Biochemical features and mutations of key proteins in SARS-CoV-2 and their impacts on RNA therapeutics
por: Zeng, Li, et al.
Publicado: (2021)