Cargando…
Magnetic Resonance Imaging Features on Deep Learning Algorithm for the Diagnosis of Nasopharyngeal Carcinoma
The objective of this research was to investigate the application values of magnetic resonance imaging (MRI) features of the deep learning-based image super-resolution reconstruction algorithm optimized convolutional neural network (OPCNN) algorithm in nasopharyngeal carcinoma (NPC) lesion diagnosis...
Autores principales: | Huang, Ruijie, Zhou, Zhanmei, Wang, Xintao, Cao, Xiaohua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9159821/ https://www.ncbi.nlm.nih.gov/pubmed/35677026 http://dx.doi.org/10.1155/2022/3790269 |
Ejemplares similares
-
Image Features of Magnetic Resonance Imaging under the Deep Learning Algorithm in the Diagnosis and Nursing of Malignant Tumors
por: Sun, Lifang, et al.
Publicado: (2021) -
Convolutional Neural Network Intelligent Segmentation Algorithm-Based Magnetic Resonance Imaging in Diagnosis of Nasopharyngeal Carcinoma Foci
por: Wang, Deli, et al.
Publicado: (2021) -
Nasopharyngeal adenoid cystic carcinoma: magnetic resonance imaging features in ten cases
por: Liu, Xue-Wen, et al.
Publicado: (2012) -
Malignant Bone Tumors Diagnosis Using Magnetic Resonance Imaging Based on Deep Learning Algorithms
por: Georgeanu, Vlad Alexandru, et al.
Publicado: (2022) -
Tumor Segmentation in Contrast-Enhanced Magnetic Resonance Imaging for Nasopharyngeal Carcinoma: Deep Learning with Convolutional Neural Network
por: Li, Qiaoliang, et al.
Publicado: (2018)