Cargando…

Fundamental immune–oncogenicity trade-offs define driver mutation fitness

Missense driver mutations in cancer are concentrated in a few hotspots(1). Various mechanisms have been proposed to explain this skew, including biased mutational processes(2), phenotypic differences(3–6) and immunoediting of neoantigens(7,8); however, to our knowledge, no existing model weighs the...

Descripción completa

Detalles Bibliográficos
Autores principales: Hoyos, David, Zappasodi, Roberta, Schulze, Isabell, Sethna, Zachary, de Andrade, Kelvin César, Bajorin, Dean F., Bandlamudi, Chaitanya, Callahan, Margaret K., Funt, Samuel A., Hadrup, Sine R., Holm, Jeppe S., Rosenberg, Jonathan E., Shah, Sohrab P., Vázquez-García, Ignacio, Weigelt, Britta, Wu, Michelle, Zamarin, Dmitriy, Campitelli, Laura F., Osborne, Edward J., Klinger, Mark, Robins, Harlan S., Khincha, Payal P., Savage, Sharon A., Balachandran, Vinod P., Wolchok, Jedd D., Hellmann, Matthew D., Merghoub, Taha, Levine, Arnold J., Łuksza, Marta, Greenbaum, Benjamin D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9159948/
https://www.ncbi.nlm.nih.gov/pubmed/35545680
http://dx.doi.org/10.1038/s41586-022-04696-z
_version_ 1784719169535606784
author Hoyos, David
Zappasodi, Roberta
Schulze, Isabell
Sethna, Zachary
de Andrade, Kelvin César
Bajorin, Dean F.
Bandlamudi, Chaitanya
Callahan, Margaret K.
Funt, Samuel A.
Hadrup, Sine R.
Holm, Jeppe S.
Rosenberg, Jonathan E.
Shah, Sohrab P.
Vázquez-García, Ignacio
Weigelt, Britta
Wu, Michelle
Zamarin, Dmitriy
Campitelli, Laura F.
Osborne, Edward J.
Klinger, Mark
Robins, Harlan S.
Khincha, Payal P.
Savage, Sharon A.
Balachandran, Vinod P.
Wolchok, Jedd D.
Hellmann, Matthew D.
Merghoub, Taha
Levine, Arnold J.
Łuksza, Marta
Greenbaum, Benjamin D.
author_facet Hoyos, David
Zappasodi, Roberta
Schulze, Isabell
Sethna, Zachary
de Andrade, Kelvin César
Bajorin, Dean F.
Bandlamudi, Chaitanya
Callahan, Margaret K.
Funt, Samuel A.
Hadrup, Sine R.
Holm, Jeppe S.
Rosenberg, Jonathan E.
Shah, Sohrab P.
Vázquez-García, Ignacio
Weigelt, Britta
Wu, Michelle
Zamarin, Dmitriy
Campitelli, Laura F.
Osborne, Edward J.
Klinger, Mark
Robins, Harlan S.
Khincha, Payal P.
Savage, Sharon A.
Balachandran, Vinod P.
Wolchok, Jedd D.
Hellmann, Matthew D.
Merghoub, Taha
Levine, Arnold J.
Łuksza, Marta
Greenbaum, Benjamin D.
author_sort Hoyos, David
collection PubMed
description Missense driver mutations in cancer are concentrated in a few hotspots(1). Various mechanisms have been proposed to explain this skew, including biased mutational processes(2), phenotypic differences(3–6) and immunoediting of neoantigens(7,8); however, to our knowledge, no existing model weighs the relative contribution of these features to tumour evolution. We propose a unified theoretical ‘free fitness’ framework that parsimoniously integrates multimodal genomic, epigenetic, transcriptomic and proteomic data into a biophysical model of the rate-limiting processes underlying the fitness advantage conferred on cancer cells by driver gene mutations. Focusing on TP53, the most mutated gene in cancer(1), we present an inference of mutant p53 concentration and demonstrate that TP53 hotspot mutations optimally solve an evolutionary trade-off between oncogenic potential and neoantigen immunogenicity. Our model anticipates patient survival in The Cancer Genome Atlas and patients with lung cancer treated with immunotherapy as well as the age of tumour onset in germline carriers of TP53 variants. The predicted differential immunogenicity between hotspot mutations was validated experimentally in patients with cancer and in a unique large dataset of healthy individuals. Our data indicate that immune selective pressure on TP53 mutations has a smaller role in non-cancerous lesions than in tumours, suggesting that targeted immunotherapy may offer an early prophylactic opportunity for the former. Determining the relative contribution of immunogenicity and oncogenic function to the selective advantage of hotspot mutations thus has important implications for both precision immunotherapies and our understanding of tumour evolution.
format Online
Article
Text
id pubmed-9159948
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-91599482022-06-03 Fundamental immune–oncogenicity trade-offs define driver mutation fitness Hoyos, David Zappasodi, Roberta Schulze, Isabell Sethna, Zachary de Andrade, Kelvin César Bajorin, Dean F. Bandlamudi, Chaitanya Callahan, Margaret K. Funt, Samuel A. Hadrup, Sine R. Holm, Jeppe S. Rosenberg, Jonathan E. Shah, Sohrab P. Vázquez-García, Ignacio Weigelt, Britta Wu, Michelle Zamarin, Dmitriy Campitelli, Laura F. Osborne, Edward J. Klinger, Mark Robins, Harlan S. Khincha, Payal P. Savage, Sharon A. Balachandran, Vinod P. Wolchok, Jedd D. Hellmann, Matthew D. Merghoub, Taha Levine, Arnold J. Łuksza, Marta Greenbaum, Benjamin D. Nature Article Missense driver mutations in cancer are concentrated in a few hotspots(1). Various mechanisms have been proposed to explain this skew, including biased mutational processes(2), phenotypic differences(3–6) and immunoediting of neoantigens(7,8); however, to our knowledge, no existing model weighs the relative contribution of these features to tumour evolution. We propose a unified theoretical ‘free fitness’ framework that parsimoniously integrates multimodal genomic, epigenetic, transcriptomic and proteomic data into a biophysical model of the rate-limiting processes underlying the fitness advantage conferred on cancer cells by driver gene mutations. Focusing on TP53, the most mutated gene in cancer(1), we present an inference of mutant p53 concentration and demonstrate that TP53 hotspot mutations optimally solve an evolutionary trade-off between oncogenic potential and neoantigen immunogenicity. Our model anticipates patient survival in The Cancer Genome Atlas and patients with lung cancer treated with immunotherapy as well as the age of tumour onset in germline carriers of TP53 variants. The predicted differential immunogenicity between hotspot mutations was validated experimentally in patients with cancer and in a unique large dataset of healthy individuals. Our data indicate that immune selective pressure on TP53 mutations has a smaller role in non-cancerous lesions than in tumours, suggesting that targeted immunotherapy may offer an early prophylactic opportunity for the former. Determining the relative contribution of immunogenicity and oncogenic function to the selective advantage of hotspot mutations thus has important implications for both precision immunotherapies and our understanding of tumour evolution. Nature Publishing Group UK 2022-05-11 2022 /pmc/articles/PMC9159948/ /pubmed/35545680 http://dx.doi.org/10.1038/s41586-022-04696-z Text en © The Author(s) 2022, corrected publication 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Hoyos, David
Zappasodi, Roberta
Schulze, Isabell
Sethna, Zachary
de Andrade, Kelvin César
Bajorin, Dean F.
Bandlamudi, Chaitanya
Callahan, Margaret K.
Funt, Samuel A.
Hadrup, Sine R.
Holm, Jeppe S.
Rosenberg, Jonathan E.
Shah, Sohrab P.
Vázquez-García, Ignacio
Weigelt, Britta
Wu, Michelle
Zamarin, Dmitriy
Campitelli, Laura F.
Osborne, Edward J.
Klinger, Mark
Robins, Harlan S.
Khincha, Payal P.
Savage, Sharon A.
Balachandran, Vinod P.
Wolchok, Jedd D.
Hellmann, Matthew D.
Merghoub, Taha
Levine, Arnold J.
Łuksza, Marta
Greenbaum, Benjamin D.
Fundamental immune–oncogenicity trade-offs define driver mutation fitness
title Fundamental immune–oncogenicity trade-offs define driver mutation fitness
title_full Fundamental immune–oncogenicity trade-offs define driver mutation fitness
title_fullStr Fundamental immune–oncogenicity trade-offs define driver mutation fitness
title_full_unstemmed Fundamental immune–oncogenicity trade-offs define driver mutation fitness
title_short Fundamental immune–oncogenicity trade-offs define driver mutation fitness
title_sort fundamental immune–oncogenicity trade-offs define driver mutation fitness
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9159948/
https://www.ncbi.nlm.nih.gov/pubmed/35545680
http://dx.doi.org/10.1038/s41586-022-04696-z
work_keys_str_mv AT hoyosdavid fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness
AT zappasodiroberta fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness
AT schulzeisabell fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness
AT sethnazachary fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness
AT deandradekelvincesar fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness
AT bajorindeanf fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness
AT bandlamudichaitanya fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness
AT callahanmargaretk fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness
AT funtsamuela fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness
AT hadrupsiner fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness
AT holmjeppes fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness
AT rosenbergjonathane fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness
AT shahsohrabp fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness
AT vazquezgarciaignacio fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness
AT weigeltbritta fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness
AT wumichelle fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness
AT zamarindmitriy fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness
AT campitellilauraf fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness
AT osborneedwardj fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness
AT klingermark fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness
AT robinsharlans fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness
AT khinchapayalp fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness
AT savagesharona fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness
AT balachandranvinodp fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness
AT wolchokjeddd fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness
AT hellmannmatthewd fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness
AT merghoubtaha fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness
AT levinearnoldj fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness
AT łukszamarta fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness
AT greenbaumbenjamind fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness