Cargando…
Fundamental immune–oncogenicity trade-offs define driver mutation fitness
Missense driver mutations in cancer are concentrated in a few hotspots(1). Various mechanisms have been proposed to explain this skew, including biased mutational processes(2), phenotypic differences(3–6) and immunoediting of neoantigens(7,8); however, to our knowledge, no existing model weighs the...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9159948/ https://www.ncbi.nlm.nih.gov/pubmed/35545680 http://dx.doi.org/10.1038/s41586-022-04696-z |
_version_ | 1784719169535606784 |
---|---|
author | Hoyos, David Zappasodi, Roberta Schulze, Isabell Sethna, Zachary de Andrade, Kelvin César Bajorin, Dean F. Bandlamudi, Chaitanya Callahan, Margaret K. Funt, Samuel A. Hadrup, Sine R. Holm, Jeppe S. Rosenberg, Jonathan E. Shah, Sohrab P. Vázquez-García, Ignacio Weigelt, Britta Wu, Michelle Zamarin, Dmitriy Campitelli, Laura F. Osborne, Edward J. Klinger, Mark Robins, Harlan S. Khincha, Payal P. Savage, Sharon A. Balachandran, Vinod P. Wolchok, Jedd D. Hellmann, Matthew D. Merghoub, Taha Levine, Arnold J. Łuksza, Marta Greenbaum, Benjamin D. |
author_facet | Hoyos, David Zappasodi, Roberta Schulze, Isabell Sethna, Zachary de Andrade, Kelvin César Bajorin, Dean F. Bandlamudi, Chaitanya Callahan, Margaret K. Funt, Samuel A. Hadrup, Sine R. Holm, Jeppe S. Rosenberg, Jonathan E. Shah, Sohrab P. Vázquez-García, Ignacio Weigelt, Britta Wu, Michelle Zamarin, Dmitriy Campitelli, Laura F. Osborne, Edward J. Klinger, Mark Robins, Harlan S. Khincha, Payal P. Savage, Sharon A. Balachandran, Vinod P. Wolchok, Jedd D. Hellmann, Matthew D. Merghoub, Taha Levine, Arnold J. Łuksza, Marta Greenbaum, Benjamin D. |
author_sort | Hoyos, David |
collection | PubMed |
description | Missense driver mutations in cancer are concentrated in a few hotspots(1). Various mechanisms have been proposed to explain this skew, including biased mutational processes(2), phenotypic differences(3–6) and immunoediting of neoantigens(7,8); however, to our knowledge, no existing model weighs the relative contribution of these features to tumour evolution. We propose a unified theoretical ‘free fitness’ framework that parsimoniously integrates multimodal genomic, epigenetic, transcriptomic and proteomic data into a biophysical model of the rate-limiting processes underlying the fitness advantage conferred on cancer cells by driver gene mutations. Focusing on TP53, the most mutated gene in cancer(1), we present an inference of mutant p53 concentration and demonstrate that TP53 hotspot mutations optimally solve an evolutionary trade-off between oncogenic potential and neoantigen immunogenicity. Our model anticipates patient survival in The Cancer Genome Atlas and patients with lung cancer treated with immunotherapy as well as the age of tumour onset in germline carriers of TP53 variants. The predicted differential immunogenicity between hotspot mutations was validated experimentally in patients with cancer and in a unique large dataset of healthy individuals. Our data indicate that immune selective pressure on TP53 mutations has a smaller role in non-cancerous lesions than in tumours, suggesting that targeted immunotherapy may offer an early prophylactic opportunity for the former. Determining the relative contribution of immunogenicity and oncogenic function to the selective advantage of hotspot mutations thus has important implications for both precision immunotherapies and our understanding of tumour evolution. |
format | Online Article Text |
id | pubmed-9159948 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-91599482022-06-03 Fundamental immune–oncogenicity trade-offs define driver mutation fitness Hoyos, David Zappasodi, Roberta Schulze, Isabell Sethna, Zachary de Andrade, Kelvin César Bajorin, Dean F. Bandlamudi, Chaitanya Callahan, Margaret K. Funt, Samuel A. Hadrup, Sine R. Holm, Jeppe S. Rosenberg, Jonathan E. Shah, Sohrab P. Vázquez-García, Ignacio Weigelt, Britta Wu, Michelle Zamarin, Dmitriy Campitelli, Laura F. Osborne, Edward J. Klinger, Mark Robins, Harlan S. Khincha, Payal P. Savage, Sharon A. Balachandran, Vinod P. Wolchok, Jedd D. Hellmann, Matthew D. Merghoub, Taha Levine, Arnold J. Łuksza, Marta Greenbaum, Benjamin D. Nature Article Missense driver mutations in cancer are concentrated in a few hotspots(1). Various mechanisms have been proposed to explain this skew, including biased mutational processes(2), phenotypic differences(3–6) and immunoediting of neoantigens(7,8); however, to our knowledge, no existing model weighs the relative contribution of these features to tumour evolution. We propose a unified theoretical ‘free fitness’ framework that parsimoniously integrates multimodal genomic, epigenetic, transcriptomic and proteomic data into a biophysical model of the rate-limiting processes underlying the fitness advantage conferred on cancer cells by driver gene mutations. Focusing on TP53, the most mutated gene in cancer(1), we present an inference of mutant p53 concentration and demonstrate that TP53 hotspot mutations optimally solve an evolutionary trade-off between oncogenic potential and neoantigen immunogenicity. Our model anticipates patient survival in The Cancer Genome Atlas and patients with lung cancer treated with immunotherapy as well as the age of tumour onset in germline carriers of TP53 variants. The predicted differential immunogenicity between hotspot mutations was validated experimentally in patients with cancer and in a unique large dataset of healthy individuals. Our data indicate that immune selective pressure on TP53 mutations has a smaller role in non-cancerous lesions than in tumours, suggesting that targeted immunotherapy may offer an early prophylactic opportunity for the former. Determining the relative contribution of immunogenicity and oncogenic function to the selective advantage of hotspot mutations thus has important implications for both precision immunotherapies and our understanding of tumour evolution. Nature Publishing Group UK 2022-05-11 2022 /pmc/articles/PMC9159948/ /pubmed/35545680 http://dx.doi.org/10.1038/s41586-022-04696-z Text en © The Author(s) 2022, corrected publication 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Hoyos, David Zappasodi, Roberta Schulze, Isabell Sethna, Zachary de Andrade, Kelvin César Bajorin, Dean F. Bandlamudi, Chaitanya Callahan, Margaret K. Funt, Samuel A. Hadrup, Sine R. Holm, Jeppe S. Rosenberg, Jonathan E. Shah, Sohrab P. Vázquez-García, Ignacio Weigelt, Britta Wu, Michelle Zamarin, Dmitriy Campitelli, Laura F. Osborne, Edward J. Klinger, Mark Robins, Harlan S. Khincha, Payal P. Savage, Sharon A. Balachandran, Vinod P. Wolchok, Jedd D. Hellmann, Matthew D. Merghoub, Taha Levine, Arnold J. Łuksza, Marta Greenbaum, Benjamin D. Fundamental immune–oncogenicity trade-offs define driver mutation fitness |
title | Fundamental immune–oncogenicity trade-offs define driver mutation fitness |
title_full | Fundamental immune–oncogenicity trade-offs define driver mutation fitness |
title_fullStr | Fundamental immune–oncogenicity trade-offs define driver mutation fitness |
title_full_unstemmed | Fundamental immune–oncogenicity trade-offs define driver mutation fitness |
title_short | Fundamental immune–oncogenicity trade-offs define driver mutation fitness |
title_sort | fundamental immune–oncogenicity trade-offs define driver mutation fitness |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9159948/ https://www.ncbi.nlm.nih.gov/pubmed/35545680 http://dx.doi.org/10.1038/s41586-022-04696-z |
work_keys_str_mv | AT hoyosdavid fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness AT zappasodiroberta fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness AT schulzeisabell fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness AT sethnazachary fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness AT deandradekelvincesar fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness AT bajorindeanf fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness AT bandlamudichaitanya fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness AT callahanmargaretk fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness AT funtsamuela fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness AT hadrupsiner fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness AT holmjeppes fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness AT rosenbergjonathane fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness AT shahsohrabp fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness AT vazquezgarciaignacio fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness AT weigeltbritta fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness AT wumichelle fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness AT zamarindmitriy fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness AT campitellilauraf fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness AT osborneedwardj fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness AT klingermark fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness AT robinsharlans fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness AT khinchapayalp fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness AT savagesharona fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness AT balachandranvinodp fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness AT wolchokjeddd fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness AT hellmannmatthewd fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness AT merghoubtaha fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness AT levinearnoldj fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness AT łukszamarta fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness AT greenbaumbenjamind fundamentalimmuneoncogenicitytradeoffsdefinedrivermutationfitness |