Cargando…

Jamming a terahertz wireless link

As the demand for bandwidth in wireless communication increases, carrier frequencies will reach the terahertz (THz) regime. One of the common preconceived notions is that, at these high frequencies, signals can radiate with high directivity which inherently provides more secure channels. Here, we de...

Descripción completa

Detalles Bibliográficos
Autores principales: Shrestha, Rabi, Guerboukha, Hichem, Fang, Zhaoji, Knightly, Edward, Mittleman, Daniel M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9160013/
https://www.ncbi.nlm.nih.gov/pubmed/35650210
http://dx.doi.org/10.1038/s41467-022-30723-8
Descripción
Sumario:As the demand for bandwidth in wireless communication increases, carrier frequencies will reach the terahertz (THz) regime. One of the common preconceived notions is that, at these high frequencies, signals can radiate with high directivity which inherently provides more secure channels. Here, we describe the first study of the vulnerability of these directional links to jamming, in which we identify several features that are distinct from the usual considerations of jamming at low frequencies. We show that the receiver’s use of an envelope detector provides the jammer with the ability to thwart active attempts to adapt to their attack. In addition, a jammer can exploit the broadband nature of typical receivers to implement a beat jamming attack, which allows them to optimize the efficacy of the interference even if their broadcast is detuned from the frequency of the intended link. Our work quantifies the increasing susceptibility of broadband receivers to jamming, revealing previously unidentified vulnerabilities which must be considered in the development of future wireless systems operating above 100 GHz.