Cargando…

A calcium-based plasticity model for predicting long-term potentiation and depression in the neocortex

Pyramidal cells (PCs) form the backbone of the layered structure of the neocortex, and plasticity of their synapses is thought to underlie learning in the brain. However, such long-term synaptic changes have been experimentally characterized between only a few types of PCs, posing a significant barr...

Descripción completa

Detalles Bibliográficos
Autores principales: Chindemi, Giuseppe, Abdellah, Marwan, Amsalem, Oren, Benavides-Piccione, Ruth, Delattre, Vincent, Doron, Michael, Ecker, András, Jaquier, Aurélien T., King, James, Kumbhar, Pramod, Monney, Caitlin, Perin, Rodrigo, Rössert, Christian, Tuncel, Anil M., Van Geit, Werner, DeFelipe, Javier, Graupner, Michael, Segev, Idan, Markram, Henry, Muller, Eilif B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9160074/
https://www.ncbi.nlm.nih.gov/pubmed/35650191
http://dx.doi.org/10.1038/s41467-022-30214-w
_version_ 1784719194316603392
author Chindemi, Giuseppe
Abdellah, Marwan
Amsalem, Oren
Benavides-Piccione, Ruth
Delattre, Vincent
Doron, Michael
Ecker, András
Jaquier, Aurélien T.
King, James
Kumbhar, Pramod
Monney, Caitlin
Perin, Rodrigo
Rössert, Christian
Tuncel, Anil M.
Van Geit, Werner
DeFelipe, Javier
Graupner, Michael
Segev, Idan
Markram, Henry
Muller, Eilif B.
author_facet Chindemi, Giuseppe
Abdellah, Marwan
Amsalem, Oren
Benavides-Piccione, Ruth
Delattre, Vincent
Doron, Michael
Ecker, András
Jaquier, Aurélien T.
King, James
Kumbhar, Pramod
Monney, Caitlin
Perin, Rodrigo
Rössert, Christian
Tuncel, Anil M.
Van Geit, Werner
DeFelipe, Javier
Graupner, Michael
Segev, Idan
Markram, Henry
Muller, Eilif B.
author_sort Chindemi, Giuseppe
collection PubMed
description Pyramidal cells (PCs) form the backbone of the layered structure of the neocortex, and plasticity of their synapses is thought to underlie learning in the brain. However, such long-term synaptic changes have been experimentally characterized between only a few types of PCs, posing a significant barrier for studying neocortical learning mechanisms. Here we introduce a model of synaptic plasticity based on data-constrained postsynaptic calcium dynamics, and show in a neocortical microcircuit model that a single parameter set is sufficient to unify the available experimental findings on long-term potentiation (LTP) and long-term depression (LTD) of PC connections. In particular, we find that the diverse plasticity outcomes across the different PC types can be explained by cell-type-specific synaptic physiology, cell morphology and innervation patterns, without requiring type-specific plasticity. Generalizing the model to in vivo extracellular calcium concentrations, we predict qualitatively different plasticity dynamics from those observed in vitro. This work provides a first comprehensive null model for LTP/LTD between neocortical PC types in vivo, and an open framework for further developing models of cortical synaptic plasticity.
format Online
Article
Text
id pubmed-9160074
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-91600742022-06-03 A calcium-based plasticity model for predicting long-term potentiation and depression in the neocortex Chindemi, Giuseppe Abdellah, Marwan Amsalem, Oren Benavides-Piccione, Ruth Delattre, Vincent Doron, Michael Ecker, András Jaquier, Aurélien T. King, James Kumbhar, Pramod Monney, Caitlin Perin, Rodrigo Rössert, Christian Tuncel, Anil M. Van Geit, Werner DeFelipe, Javier Graupner, Michael Segev, Idan Markram, Henry Muller, Eilif B. Nat Commun Article Pyramidal cells (PCs) form the backbone of the layered structure of the neocortex, and plasticity of their synapses is thought to underlie learning in the brain. However, such long-term synaptic changes have been experimentally characterized between only a few types of PCs, posing a significant barrier for studying neocortical learning mechanisms. Here we introduce a model of synaptic plasticity based on data-constrained postsynaptic calcium dynamics, and show in a neocortical microcircuit model that a single parameter set is sufficient to unify the available experimental findings on long-term potentiation (LTP) and long-term depression (LTD) of PC connections. In particular, we find that the diverse plasticity outcomes across the different PC types can be explained by cell-type-specific synaptic physiology, cell morphology and innervation patterns, without requiring type-specific plasticity. Generalizing the model to in vivo extracellular calcium concentrations, we predict qualitatively different plasticity dynamics from those observed in vitro. This work provides a first comprehensive null model for LTP/LTD between neocortical PC types in vivo, and an open framework for further developing models of cortical synaptic plasticity. Nature Publishing Group UK 2022-06-01 /pmc/articles/PMC9160074/ /pubmed/35650191 http://dx.doi.org/10.1038/s41467-022-30214-w Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Chindemi, Giuseppe
Abdellah, Marwan
Amsalem, Oren
Benavides-Piccione, Ruth
Delattre, Vincent
Doron, Michael
Ecker, András
Jaquier, Aurélien T.
King, James
Kumbhar, Pramod
Monney, Caitlin
Perin, Rodrigo
Rössert, Christian
Tuncel, Anil M.
Van Geit, Werner
DeFelipe, Javier
Graupner, Michael
Segev, Idan
Markram, Henry
Muller, Eilif B.
A calcium-based plasticity model for predicting long-term potentiation and depression in the neocortex
title A calcium-based plasticity model for predicting long-term potentiation and depression in the neocortex
title_full A calcium-based plasticity model for predicting long-term potentiation and depression in the neocortex
title_fullStr A calcium-based plasticity model for predicting long-term potentiation and depression in the neocortex
title_full_unstemmed A calcium-based plasticity model for predicting long-term potentiation and depression in the neocortex
title_short A calcium-based plasticity model for predicting long-term potentiation and depression in the neocortex
title_sort calcium-based plasticity model for predicting long-term potentiation and depression in the neocortex
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9160074/
https://www.ncbi.nlm.nih.gov/pubmed/35650191
http://dx.doi.org/10.1038/s41467-022-30214-w
work_keys_str_mv AT chindemigiuseppe acalciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT abdellahmarwan acalciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT amsalemoren acalciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT benavidespiccioneruth acalciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT delattrevincent acalciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT doronmichael acalciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT eckerandras acalciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT jaquieraurelient acalciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT kingjames acalciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT kumbharpramod acalciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT monneycaitlin acalciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT perinrodrigo acalciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT rossertchristian acalciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT tuncelanilm acalciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT vangeitwerner acalciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT defelipejavier acalciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT graupnermichael acalciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT segevidan acalciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT markramhenry acalciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT mullereilifb acalciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT chindemigiuseppe calciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT abdellahmarwan calciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT amsalemoren calciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT benavidespiccioneruth calciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT delattrevincent calciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT doronmichael calciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT eckerandras calciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT jaquieraurelient calciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT kingjames calciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT kumbharpramod calciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT monneycaitlin calciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT perinrodrigo calciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT rossertchristian calciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT tuncelanilm calciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT vangeitwerner calciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT defelipejavier calciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT graupnermichael calciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT segevidan calciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT markramhenry calciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex
AT mullereilifb calciumbasedplasticitymodelforpredictinglongtermpotentiationanddepressionintheneocortex