Cargando…
Cell-free prototyping enables implementation of optimized reverse β-oxidation pathways in heterotrophic and autotrophic bacteria
Carbon-negative synthesis of biochemical products has the potential to mitigate global CO(2) emissions. An attractive route to do this is the reverse β-oxidation (r-BOX) pathway coupled to the Wood-Ljungdahl pathway. Here, we optimize and implement r-BOX for the synthesis of C4-C6 acids and alcohols...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9160091/ https://www.ncbi.nlm.nih.gov/pubmed/35650184 http://dx.doi.org/10.1038/s41467-022-30571-6 |
_version_ | 1784719197742301184 |
---|---|
author | Vögeli, Bastian Schulz, Luca Garg, Shivani Tarasava, Katia Clomburg, James M. Lee, Seung Hwan Gonnot, Aislinn Moully, Elamar Hakim Kimmel, Blaise R. Tran, Loan Zeleznik, Hunter Brown, Steven D. Simpson, Sean D. Mrksich, Milan Karim, Ashty S. Gonzalez, Ramon Köpke, Michael Jewett, Michael C. |
author_facet | Vögeli, Bastian Schulz, Luca Garg, Shivani Tarasava, Katia Clomburg, James M. Lee, Seung Hwan Gonnot, Aislinn Moully, Elamar Hakim Kimmel, Blaise R. Tran, Loan Zeleznik, Hunter Brown, Steven D. Simpson, Sean D. Mrksich, Milan Karim, Ashty S. Gonzalez, Ramon Köpke, Michael Jewett, Michael C. |
author_sort | Vögeli, Bastian |
collection | PubMed |
description | Carbon-negative synthesis of biochemical products has the potential to mitigate global CO(2) emissions. An attractive route to do this is the reverse β-oxidation (r-BOX) pathway coupled to the Wood-Ljungdahl pathway. Here, we optimize and implement r-BOX for the synthesis of C4-C6 acids and alcohols. With a high-throughput in vitro prototyping workflow, we screen 762 unique pathway combinations using cell-free extracts tailored for r-BOX to identify enzyme sets for enhanced product selectivity. Implementation of these pathways into Escherichia coli generates designer strains for the selective production of butanoic acid (4.9 ± 0.1 gL(−1)), as well as hexanoic acid (3.06 ± 0.03 gL(−1)) and 1-hexanol (1.0 ± 0.1 gL(−1)) at the best performance reported to date in this bacterium. We also generate Clostridium autoethanogenum strains able to produce 1-hexanol from syngas, achieving a titer of 0.26 gL(−1) in a 1.5 L continuous fermentation. Our strategy enables optimization of r-BOX derived products for biomanufacturing and industrial biotechnology. |
format | Online Article Text |
id | pubmed-9160091 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-91600912022-06-03 Cell-free prototyping enables implementation of optimized reverse β-oxidation pathways in heterotrophic and autotrophic bacteria Vögeli, Bastian Schulz, Luca Garg, Shivani Tarasava, Katia Clomburg, James M. Lee, Seung Hwan Gonnot, Aislinn Moully, Elamar Hakim Kimmel, Blaise R. Tran, Loan Zeleznik, Hunter Brown, Steven D. Simpson, Sean D. Mrksich, Milan Karim, Ashty S. Gonzalez, Ramon Köpke, Michael Jewett, Michael C. Nat Commun Article Carbon-negative synthesis of biochemical products has the potential to mitigate global CO(2) emissions. An attractive route to do this is the reverse β-oxidation (r-BOX) pathway coupled to the Wood-Ljungdahl pathway. Here, we optimize and implement r-BOX for the synthesis of C4-C6 acids and alcohols. With a high-throughput in vitro prototyping workflow, we screen 762 unique pathway combinations using cell-free extracts tailored for r-BOX to identify enzyme sets for enhanced product selectivity. Implementation of these pathways into Escherichia coli generates designer strains for the selective production of butanoic acid (4.9 ± 0.1 gL(−1)), as well as hexanoic acid (3.06 ± 0.03 gL(−1)) and 1-hexanol (1.0 ± 0.1 gL(−1)) at the best performance reported to date in this bacterium. We also generate Clostridium autoethanogenum strains able to produce 1-hexanol from syngas, achieving a titer of 0.26 gL(−1) in a 1.5 L continuous fermentation. Our strategy enables optimization of r-BOX derived products for biomanufacturing and industrial biotechnology. Nature Publishing Group UK 2022-06-01 /pmc/articles/PMC9160091/ /pubmed/35650184 http://dx.doi.org/10.1038/s41467-022-30571-6 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Vögeli, Bastian Schulz, Luca Garg, Shivani Tarasava, Katia Clomburg, James M. Lee, Seung Hwan Gonnot, Aislinn Moully, Elamar Hakim Kimmel, Blaise R. Tran, Loan Zeleznik, Hunter Brown, Steven D. Simpson, Sean D. Mrksich, Milan Karim, Ashty S. Gonzalez, Ramon Köpke, Michael Jewett, Michael C. Cell-free prototyping enables implementation of optimized reverse β-oxidation pathways in heterotrophic and autotrophic bacteria |
title | Cell-free prototyping enables implementation of optimized reverse β-oxidation pathways in heterotrophic and autotrophic bacteria |
title_full | Cell-free prototyping enables implementation of optimized reverse β-oxidation pathways in heterotrophic and autotrophic bacteria |
title_fullStr | Cell-free prototyping enables implementation of optimized reverse β-oxidation pathways in heterotrophic and autotrophic bacteria |
title_full_unstemmed | Cell-free prototyping enables implementation of optimized reverse β-oxidation pathways in heterotrophic and autotrophic bacteria |
title_short | Cell-free prototyping enables implementation of optimized reverse β-oxidation pathways in heterotrophic and autotrophic bacteria |
title_sort | cell-free prototyping enables implementation of optimized reverse β-oxidation pathways in heterotrophic and autotrophic bacteria |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9160091/ https://www.ncbi.nlm.nih.gov/pubmed/35650184 http://dx.doi.org/10.1038/s41467-022-30571-6 |
work_keys_str_mv | AT vogelibastian cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria AT schulzluca cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria AT gargshivani cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria AT tarasavakatia cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria AT clomburgjamesm cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria AT leeseunghwan cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria AT gonnotaislinn cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria AT moullyelamarhakim cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria AT kimmelblaiser cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria AT tranloan cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria AT zeleznikhunter cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria AT brownstevend cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria AT simpsonseand cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria AT mrksichmilan cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria AT karimashtys cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria AT gonzalezramon cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria AT kopkemichael cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria AT jewettmichaelc cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria |