Cargando…

Cell-free prototyping enables implementation of optimized reverse β-oxidation pathways in heterotrophic and autotrophic bacteria

Carbon-negative synthesis of biochemical products has the potential to mitigate global CO(2) emissions. An attractive route to do this is the reverse β-oxidation (r-BOX) pathway coupled to the Wood-Ljungdahl pathway. Here, we optimize and implement r-BOX for the synthesis of C4-C6 acids and alcohols...

Descripción completa

Detalles Bibliográficos
Autores principales: Vögeli, Bastian, Schulz, Luca, Garg, Shivani, Tarasava, Katia, Clomburg, James M., Lee, Seung Hwan, Gonnot, Aislinn, Moully, Elamar Hakim, Kimmel, Blaise R., Tran, Loan, Zeleznik, Hunter, Brown, Steven D., Simpson, Sean D., Mrksich, Milan, Karim, Ashty S., Gonzalez, Ramon, Köpke, Michael, Jewett, Michael C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9160091/
https://www.ncbi.nlm.nih.gov/pubmed/35650184
http://dx.doi.org/10.1038/s41467-022-30571-6
_version_ 1784719197742301184
author Vögeli, Bastian
Schulz, Luca
Garg, Shivani
Tarasava, Katia
Clomburg, James M.
Lee, Seung Hwan
Gonnot, Aislinn
Moully, Elamar Hakim
Kimmel, Blaise R.
Tran, Loan
Zeleznik, Hunter
Brown, Steven D.
Simpson, Sean D.
Mrksich, Milan
Karim, Ashty S.
Gonzalez, Ramon
Köpke, Michael
Jewett, Michael C.
author_facet Vögeli, Bastian
Schulz, Luca
Garg, Shivani
Tarasava, Katia
Clomburg, James M.
Lee, Seung Hwan
Gonnot, Aislinn
Moully, Elamar Hakim
Kimmel, Blaise R.
Tran, Loan
Zeleznik, Hunter
Brown, Steven D.
Simpson, Sean D.
Mrksich, Milan
Karim, Ashty S.
Gonzalez, Ramon
Köpke, Michael
Jewett, Michael C.
author_sort Vögeli, Bastian
collection PubMed
description Carbon-negative synthesis of biochemical products has the potential to mitigate global CO(2) emissions. An attractive route to do this is the reverse β-oxidation (r-BOX) pathway coupled to the Wood-Ljungdahl pathway. Here, we optimize and implement r-BOX for the synthesis of C4-C6 acids and alcohols. With a high-throughput in vitro prototyping workflow, we screen 762 unique pathway combinations using cell-free extracts tailored for r-BOX to identify enzyme sets for enhanced product selectivity. Implementation of these pathways into Escherichia coli generates designer strains for the selective production of butanoic acid (4.9 ± 0.1 gL(−1)), as well as hexanoic acid (3.06 ± 0.03 gL(−1)) and 1-hexanol (1.0 ± 0.1 gL(−1)) at the best performance reported to date in this bacterium. We also generate Clostridium autoethanogenum strains able to produce 1-hexanol from syngas, achieving a titer of 0.26 gL(−1) in a 1.5 L continuous fermentation. Our strategy enables optimization of r-BOX derived products for biomanufacturing and industrial biotechnology.
format Online
Article
Text
id pubmed-9160091
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-91600912022-06-03 Cell-free prototyping enables implementation of optimized reverse β-oxidation pathways in heterotrophic and autotrophic bacteria Vögeli, Bastian Schulz, Luca Garg, Shivani Tarasava, Katia Clomburg, James M. Lee, Seung Hwan Gonnot, Aislinn Moully, Elamar Hakim Kimmel, Blaise R. Tran, Loan Zeleznik, Hunter Brown, Steven D. Simpson, Sean D. Mrksich, Milan Karim, Ashty S. Gonzalez, Ramon Köpke, Michael Jewett, Michael C. Nat Commun Article Carbon-negative synthesis of biochemical products has the potential to mitigate global CO(2) emissions. An attractive route to do this is the reverse β-oxidation (r-BOX) pathway coupled to the Wood-Ljungdahl pathway. Here, we optimize and implement r-BOX for the synthesis of C4-C6 acids and alcohols. With a high-throughput in vitro prototyping workflow, we screen 762 unique pathway combinations using cell-free extracts tailored for r-BOX to identify enzyme sets for enhanced product selectivity. Implementation of these pathways into Escherichia coli generates designer strains for the selective production of butanoic acid (4.9 ± 0.1 gL(−1)), as well as hexanoic acid (3.06 ± 0.03 gL(−1)) and 1-hexanol (1.0 ± 0.1 gL(−1)) at the best performance reported to date in this bacterium. We also generate Clostridium autoethanogenum strains able to produce 1-hexanol from syngas, achieving a titer of 0.26 gL(−1) in a 1.5 L continuous fermentation. Our strategy enables optimization of r-BOX derived products for biomanufacturing and industrial biotechnology. Nature Publishing Group UK 2022-06-01 /pmc/articles/PMC9160091/ /pubmed/35650184 http://dx.doi.org/10.1038/s41467-022-30571-6 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Vögeli, Bastian
Schulz, Luca
Garg, Shivani
Tarasava, Katia
Clomburg, James M.
Lee, Seung Hwan
Gonnot, Aislinn
Moully, Elamar Hakim
Kimmel, Blaise R.
Tran, Loan
Zeleznik, Hunter
Brown, Steven D.
Simpson, Sean D.
Mrksich, Milan
Karim, Ashty S.
Gonzalez, Ramon
Köpke, Michael
Jewett, Michael C.
Cell-free prototyping enables implementation of optimized reverse β-oxidation pathways in heterotrophic and autotrophic bacteria
title Cell-free prototyping enables implementation of optimized reverse β-oxidation pathways in heterotrophic and autotrophic bacteria
title_full Cell-free prototyping enables implementation of optimized reverse β-oxidation pathways in heterotrophic and autotrophic bacteria
title_fullStr Cell-free prototyping enables implementation of optimized reverse β-oxidation pathways in heterotrophic and autotrophic bacteria
title_full_unstemmed Cell-free prototyping enables implementation of optimized reverse β-oxidation pathways in heterotrophic and autotrophic bacteria
title_short Cell-free prototyping enables implementation of optimized reverse β-oxidation pathways in heterotrophic and autotrophic bacteria
title_sort cell-free prototyping enables implementation of optimized reverse β-oxidation pathways in heterotrophic and autotrophic bacteria
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9160091/
https://www.ncbi.nlm.nih.gov/pubmed/35650184
http://dx.doi.org/10.1038/s41467-022-30571-6
work_keys_str_mv AT vogelibastian cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria
AT schulzluca cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria
AT gargshivani cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria
AT tarasavakatia cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria
AT clomburgjamesm cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria
AT leeseunghwan cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria
AT gonnotaislinn cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria
AT moullyelamarhakim cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria
AT kimmelblaiser cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria
AT tranloan cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria
AT zeleznikhunter cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria
AT brownstevend cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria
AT simpsonseand cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria
AT mrksichmilan cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria
AT karimashtys cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria
AT gonzalezramon cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria
AT kopkemichael cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria
AT jewettmichaelc cellfreeprototypingenablesimplementationofoptimizedreverseboxidationpathwaysinheterotrophicandautotrophicbacteria