Cargando…
Entwicklung und Evaluation eines Deep-Learning-Algorithmus für die Worterkennung aus Lippenbewegungen für die deutsche Sprache
BACKGROUND: When reading lips, many people benefit from additional visual information from the lip movements of the speaker, which is, however, very error prone. Algorithms for lip reading with artificial intelligence based on artificial neural networks significantly improve word recognition but are...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Medizin
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9160146/ https://www.ncbi.nlm.nih.gov/pubmed/35024877 http://dx.doi.org/10.1007/s00106-021-01143-9 |
_version_ | 1784719211069702144 |
---|---|
author | Pham, Dinh Nam Rahne, Torsten |
author_facet | Pham, Dinh Nam Rahne, Torsten |
author_sort | Pham, Dinh Nam |
collection | PubMed |
description | BACKGROUND: When reading lips, many people benefit from additional visual information from the lip movements of the speaker, which is, however, very error prone. Algorithms for lip reading with artificial intelligence based on artificial neural networks significantly improve word recognition but are not available for the German language. MATERIALS AND METHODS: A total of 1806 videoclips with only one German-speaking person each were selected, split into word segments, and assigned to word classes using speech-recognition software. In 38,391 video segments with 32 speakers, 18 polysyllabic, visually distinguishable words were used to train and validate a neural network. The 3D Convolutional Neural Network and Gated Recurrent Units models and a combination of both models (GRUConv) were compared, as were different image sections and color spaces of the videos. The accuracy was determined in 5000 training epochs. RESULTS: Comparison of the color spaces did not reveal any relevant different correct classification rates in the range from 69% to 72%. With a cut to the lips, a significantly higher accuracy of 70% was achieved than when cut to the entire speaker’s face (34%). With the GRUConv model, the maximum accuracies were 87% with known speakers and 63% in the validation with unknown speakers. CONCLUSION: The neural network for lip reading, which was first developed for the German language, shows a very high level of accuracy, comparable to English-language algorithms. It works with unknown speakers as well and can be generalized with more word classes. |
format | Online Article Text |
id | pubmed-9160146 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer Medizin |
record_format | MEDLINE/PubMed |
spelling | pubmed-91601462022-06-03 Entwicklung und Evaluation eines Deep-Learning-Algorithmus für die Worterkennung aus Lippenbewegungen für die deutsche Sprache Pham, Dinh Nam Rahne, Torsten HNO Originalien BACKGROUND: When reading lips, many people benefit from additional visual information from the lip movements of the speaker, which is, however, very error prone. Algorithms for lip reading with artificial intelligence based on artificial neural networks significantly improve word recognition but are not available for the German language. MATERIALS AND METHODS: A total of 1806 videoclips with only one German-speaking person each were selected, split into word segments, and assigned to word classes using speech-recognition software. In 38,391 video segments with 32 speakers, 18 polysyllabic, visually distinguishable words were used to train and validate a neural network. The 3D Convolutional Neural Network and Gated Recurrent Units models and a combination of both models (GRUConv) were compared, as were different image sections and color spaces of the videos. The accuracy was determined in 5000 training epochs. RESULTS: Comparison of the color spaces did not reveal any relevant different correct classification rates in the range from 69% to 72%. With a cut to the lips, a significantly higher accuracy of 70% was achieved than when cut to the entire speaker’s face (34%). With the GRUConv model, the maximum accuracies were 87% with known speakers and 63% in the validation with unknown speakers. CONCLUSION: The neural network for lip reading, which was first developed for the German language, shows a very high level of accuracy, comparable to English-language algorithms. It works with unknown speakers as well and can be generalized with more word classes. Springer Medizin 2022-01-13 2022 /pmc/articles/PMC9160146/ /pubmed/35024877 http://dx.doi.org/10.1007/s00106-021-01143-9 Text en © The Author(s) 2022, korrigierte Publikation 2022 https://creativecommons.org/licenses/by/4.0/Open Access Dieser Artikel wird unter der Creative Commons Namensnennung 4.0 International Lizenz veröffentlicht, welche die Nutzung, Vervielfältigung, Bearbeitung, Verbreitung und Wiedergabe in jeglichem Medium und Format erlaubt, sofern Sie den/die ursprünglichen Autor(en) und die Quelle ordnungsgemäß nennen, einen Link zur Creative Commons Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden. Die in diesem Artikel enthaltenen Bilder und sonstiges Drittmaterial unterliegen ebenfalls der genannten Creative Commons Lizenz, sofern sich aus der Abbildungslegende nichts anderes ergibt. Sofern das betreffende Material nicht unter der genannten Creative Commons Lizenz steht und die betreffende Handlung nicht nach gesetzlichen Vorschriften erlaubt ist, ist für die oben aufgeführten Weiterverwendungen des Materials die Einwilligung des jeweiligen Rechteinhabers einzuholen. Weitere Details zur Lizenz entnehmen Sie bitte der Lizenzinformation auf http://creativecommons.org/licenses/by/4.0/deed.de (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Originalien Pham, Dinh Nam Rahne, Torsten Entwicklung und Evaluation eines Deep-Learning-Algorithmus für die Worterkennung aus Lippenbewegungen für die deutsche Sprache |
title | Entwicklung und Evaluation eines Deep-Learning-Algorithmus für die Worterkennung aus Lippenbewegungen für die deutsche Sprache |
title_full | Entwicklung und Evaluation eines Deep-Learning-Algorithmus für die Worterkennung aus Lippenbewegungen für die deutsche Sprache |
title_fullStr | Entwicklung und Evaluation eines Deep-Learning-Algorithmus für die Worterkennung aus Lippenbewegungen für die deutsche Sprache |
title_full_unstemmed | Entwicklung und Evaluation eines Deep-Learning-Algorithmus für die Worterkennung aus Lippenbewegungen für die deutsche Sprache |
title_short | Entwicklung und Evaluation eines Deep-Learning-Algorithmus für die Worterkennung aus Lippenbewegungen für die deutsche Sprache |
title_sort | entwicklung und evaluation eines deep-learning-algorithmus für die worterkennung aus lippenbewegungen für die deutsche sprache |
topic | Originalien |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9160146/ https://www.ncbi.nlm.nih.gov/pubmed/35024877 http://dx.doi.org/10.1007/s00106-021-01143-9 |
work_keys_str_mv | AT phamdinhnam entwicklungundevaluationeinesdeeplearningalgorithmusfurdieworterkennungauslippenbewegungenfurdiedeutschesprache AT rahnetorsten entwicklungundevaluationeinesdeeplearningalgorithmusfurdieworterkennungauslippenbewegungenfurdiedeutschesprache |