Cargando…
Variant interpretation using population databases: Lessons from gnomAD
Reference population databases are an essential tool in variant and gene interpretation. Their use guides the identification of pathogenic variants amidst the sea of benign variation present in every human genome, and supports the discovery of new disease–gene relationships. The Genome Aggregation D...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9160216/ https://www.ncbi.nlm.nih.gov/pubmed/34859531 http://dx.doi.org/10.1002/humu.24309 |
_version_ | 1784719224035344384 |
---|---|
author | Gudmundsson, Sanna Singer‐Berk, Moriel Watts, Nicholas A. Phu, William Goodrich, Julia K. Solomonson, Matthew Rehm, Heidi L. MacArthur, Daniel G. O'Donnell‐Luria, Anne |
author_facet | Gudmundsson, Sanna Singer‐Berk, Moriel Watts, Nicholas A. Phu, William Goodrich, Julia K. Solomonson, Matthew Rehm, Heidi L. MacArthur, Daniel G. O'Donnell‐Luria, Anne |
author_sort | Gudmundsson, Sanna |
collection | PubMed |
description | Reference population databases are an essential tool in variant and gene interpretation. Their use guides the identification of pathogenic variants amidst the sea of benign variation present in every human genome, and supports the discovery of new disease–gene relationships. The Genome Aggregation Database (gnomAD) is currently the largest and most widely used publicly available collection of population variation from harmonized sequencing data. The data is available through the online gnomAD browser (https://gnomad.broadinstitute.org/) that enables rapid and intuitive variant analysis. This review provides guidance on the content of the gnomAD browser, and its usage for variant and gene interpretation. We introduce key features including allele frequency, per‐base expression levels, constraint scores, and variant co‐occurrence, alongside guidance on how to use these in analysis, with a focus on the interpretation of candidate variants and novel genes in rare disease. |
format | Online Article Text |
id | pubmed-9160216 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-91602162022-08-01 Variant interpretation using population databases: Lessons from gnomAD Gudmundsson, Sanna Singer‐Berk, Moriel Watts, Nicholas A. Phu, William Goodrich, Julia K. Solomonson, Matthew Rehm, Heidi L. MacArthur, Daniel G. O'Donnell‐Luria, Anne Hum Mutat Review Reference population databases are an essential tool in variant and gene interpretation. Their use guides the identification of pathogenic variants amidst the sea of benign variation present in every human genome, and supports the discovery of new disease–gene relationships. The Genome Aggregation Database (gnomAD) is currently the largest and most widely used publicly available collection of population variation from harmonized sequencing data. The data is available through the online gnomAD browser (https://gnomad.broadinstitute.org/) that enables rapid and intuitive variant analysis. This review provides guidance on the content of the gnomAD browser, and its usage for variant and gene interpretation. We introduce key features including allele frequency, per‐base expression levels, constraint scores, and variant co‐occurrence, alongside guidance on how to use these in analysis, with a focus on the interpretation of candidate variants and novel genes in rare disease. John Wiley and Sons Inc. 2021-12-16 2022-08 /pmc/articles/PMC9160216/ /pubmed/34859531 http://dx.doi.org/10.1002/humu.24309 Text en © 2022 The Authors. Human Mutation Published by Wiley Periodicals LLC https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Gudmundsson, Sanna Singer‐Berk, Moriel Watts, Nicholas A. Phu, William Goodrich, Julia K. Solomonson, Matthew Rehm, Heidi L. MacArthur, Daniel G. O'Donnell‐Luria, Anne Variant interpretation using population databases: Lessons from gnomAD |
title | Variant interpretation using population databases: Lessons from gnomAD |
title_full | Variant interpretation using population databases: Lessons from gnomAD |
title_fullStr | Variant interpretation using population databases: Lessons from gnomAD |
title_full_unstemmed | Variant interpretation using population databases: Lessons from gnomAD |
title_short | Variant interpretation using population databases: Lessons from gnomAD |
title_sort | variant interpretation using population databases: lessons from gnomad |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9160216/ https://www.ncbi.nlm.nih.gov/pubmed/34859531 http://dx.doi.org/10.1002/humu.24309 |
work_keys_str_mv | AT gudmundssonsanna variantinterpretationusingpopulationdatabaseslessonsfromgnomad AT singerberkmoriel variantinterpretationusingpopulationdatabaseslessonsfromgnomad AT wattsnicholasa variantinterpretationusingpopulationdatabaseslessonsfromgnomad AT phuwilliam variantinterpretationusingpopulationdatabaseslessonsfromgnomad AT goodrichjuliak variantinterpretationusingpopulationdatabaseslessonsfromgnomad AT solomonsonmatthew variantinterpretationusingpopulationdatabaseslessonsfromgnomad AT variantinterpretationusingpopulationdatabaseslessonsfromgnomad AT rehmheidil variantinterpretationusingpopulationdatabaseslessonsfromgnomad AT macarthurdanielg variantinterpretationusingpopulationdatabaseslessonsfromgnomad AT odonnellluriaanne variantinterpretationusingpopulationdatabaseslessonsfromgnomad |