Cargando…

A Multi-Scale Densely Connected Convolutional Neural Network for Automated Thyroid Nodule Classification

Automated thyroid nodule classification in ultrasound images is an important way to detect thyroid nodules and to make a more accurate diagnosis. In this paper, we propose a novel deep convolutional neural network (CNN) model, called n-ClsNet, for thyroid nodule classification. Our model consists of...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Luoyan, Zhou, Xiaogen, Nie, Xingqing, Lin, Xingtao, Li, Jing, Zheng, Haonan, Xue, Ensheng, Chen, Shun, Chen, Cong, Du, Min, Tong, Tong, Gao, Qinquan, Zheng, Meijuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9160335/
https://www.ncbi.nlm.nih.gov/pubmed/35663553
http://dx.doi.org/10.3389/fnins.2022.878718
_version_ 1784719248316170240
author Wang, Luoyan
Zhou, Xiaogen
Nie, Xingqing
Lin, Xingtao
Li, Jing
Zheng, Haonan
Xue, Ensheng
Chen, Shun
Chen, Cong
Du, Min
Tong, Tong
Gao, Qinquan
Zheng, Meijuan
author_facet Wang, Luoyan
Zhou, Xiaogen
Nie, Xingqing
Lin, Xingtao
Li, Jing
Zheng, Haonan
Xue, Ensheng
Chen, Shun
Chen, Cong
Du, Min
Tong, Tong
Gao, Qinquan
Zheng, Meijuan
author_sort Wang, Luoyan
collection PubMed
description Automated thyroid nodule classification in ultrasound images is an important way to detect thyroid nodules and to make a more accurate diagnosis. In this paper, we propose a novel deep convolutional neural network (CNN) model, called n-ClsNet, for thyroid nodule classification. Our model consists of a multi-scale classification layer, multiple skip blocks, and a hybrid atrous convolution (HAC) block. The multi-scale classification layer first obtains multi-scale feature maps in order to make full use of image features. After that, each skip-block propagates information at different scales to learn multi-scale features for image classification. Finally, the HAC block is used to replace the downpooling layer so that the spatial information can be fully learned. We have evaluated our n-ClsNet model on the TNUI-2021 dataset. The proposed n-ClsNet achieves an average accuracy (ACC) score of 93.8% in the thyroid nodule classification task, which outperforms several representative state-of-the-art classification methods.
format Online
Article
Text
id pubmed-9160335
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-91603352022-06-03 A Multi-Scale Densely Connected Convolutional Neural Network for Automated Thyroid Nodule Classification Wang, Luoyan Zhou, Xiaogen Nie, Xingqing Lin, Xingtao Li, Jing Zheng, Haonan Xue, Ensheng Chen, Shun Chen, Cong Du, Min Tong, Tong Gao, Qinquan Zheng, Meijuan Front Neurosci Neuroscience Automated thyroid nodule classification in ultrasound images is an important way to detect thyroid nodules and to make a more accurate diagnosis. In this paper, we propose a novel deep convolutional neural network (CNN) model, called n-ClsNet, for thyroid nodule classification. Our model consists of a multi-scale classification layer, multiple skip blocks, and a hybrid atrous convolution (HAC) block. The multi-scale classification layer first obtains multi-scale feature maps in order to make full use of image features. After that, each skip-block propagates information at different scales to learn multi-scale features for image classification. Finally, the HAC block is used to replace the downpooling layer so that the spatial information can be fully learned. We have evaluated our n-ClsNet model on the TNUI-2021 dataset. The proposed n-ClsNet achieves an average accuracy (ACC) score of 93.8% in the thyroid nodule classification task, which outperforms several representative state-of-the-art classification methods. Frontiers Media S.A. 2022-05-19 /pmc/articles/PMC9160335/ /pubmed/35663553 http://dx.doi.org/10.3389/fnins.2022.878718 Text en Copyright © 2022 Wang, Zhou, Nie, Lin, Li, Zheng, Xue, Chen, Chen, Du, Tong, Gao and Zheng. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Wang, Luoyan
Zhou, Xiaogen
Nie, Xingqing
Lin, Xingtao
Li, Jing
Zheng, Haonan
Xue, Ensheng
Chen, Shun
Chen, Cong
Du, Min
Tong, Tong
Gao, Qinquan
Zheng, Meijuan
A Multi-Scale Densely Connected Convolutional Neural Network for Automated Thyroid Nodule Classification
title A Multi-Scale Densely Connected Convolutional Neural Network for Automated Thyroid Nodule Classification
title_full A Multi-Scale Densely Connected Convolutional Neural Network for Automated Thyroid Nodule Classification
title_fullStr A Multi-Scale Densely Connected Convolutional Neural Network for Automated Thyroid Nodule Classification
title_full_unstemmed A Multi-Scale Densely Connected Convolutional Neural Network for Automated Thyroid Nodule Classification
title_short A Multi-Scale Densely Connected Convolutional Neural Network for Automated Thyroid Nodule Classification
title_sort multi-scale densely connected convolutional neural network for automated thyroid nodule classification
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9160335/
https://www.ncbi.nlm.nih.gov/pubmed/35663553
http://dx.doi.org/10.3389/fnins.2022.878718
work_keys_str_mv AT wangluoyan amultiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification
AT zhouxiaogen amultiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification
AT niexingqing amultiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification
AT linxingtao amultiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification
AT lijing amultiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification
AT zhenghaonan amultiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification
AT xueensheng amultiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification
AT chenshun amultiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification
AT chencong amultiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification
AT dumin amultiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification
AT tongtong amultiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification
AT gaoqinquan amultiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification
AT zhengmeijuan amultiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification
AT wangluoyan multiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification
AT zhouxiaogen multiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification
AT niexingqing multiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification
AT linxingtao multiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification
AT lijing multiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification
AT zhenghaonan multiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification
AT xueensheng multiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification
AT chenshun multiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification
AT chencong multiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification
AT dumin multiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification
AT tongtong multiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification
AT gaoqinquan multiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification
AT zhengmeijuan multiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification