Cargando…
A Multi-Scale Densely Connected Convolutional Neural Network for Automated Thyroid Nodule Classification
Automated thyroid nodule classification in ultrasound images is an important way to detect thyroid nodules and to make a more accurate diagnosis. In this paper, we propose a novel deep convolutional neural network (CNN) model, called n-ClsNet, for thyroid nodule classification. Our model consists of...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9160335/ https://www.ncbi.nlm.nih.gov/pubmed/35663553 http://dx.doi.org/10.3389/fnins.2022.878718 |
_version_ | 1784719248316170240 |
---|---|
author | Wang, Luoyan Zhou, Xiaogen Nie, Xingqing Lin, Xingtao Li, Jing Zheng, Haonan Xue, Ensheng Chen, Shun Chen, Cong Du, Min Tong, Tong Gao, Qinquan Zheng, Meijuan |
author_facet | Wang, Luoyan Zhou, Xiaogen Nie, Xingqing Lin, Xingtao Li, Jing Zheng, Haonan Xue, Ensheng Chen, Shun Chen, Cong Du, Min Tong, Tong Gao, Qinquan Zheng, Meijuan |
author_sort | Wang, Luoyan |
collection | PubMed |
description | Automated thyroid nodule classification in ultrasound images is an important way to detect thyroid nodules and to make a more accurate diagnosis. In this paper, we propose a novel deep convolutional neural network (CNN) model, called n-ClsNet, for thyroid nodule classification. Our model consists of a multi-scale classification layer, multiple skip blocks, and a hybrid atrous convolution (HAC) block. The multi-scale classification layer first obtains multi-scale feature maps in order to make full use of image features. After that, each skip-block propagates information at different scales to learn multi-scale features for image classification. Finally, the HAC block is used to replace the downpooling layer so that the spatial information can be fully learned. We have evaluated our n-ClsNet model on the TNUI-2021 dataset. The proposed n-ClsNet achieves an average accuracy (ACC) score of 93.8% in the thyroid nodule classification task, which outperforms several representative state-of-the-art classification methods. |
format | Online Article Text |
id | pubmed-9160335 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-91603352022-06-03 A Multi-Scale Densely Connected Convolutional Neural Network for Automated Thyroid Nodule Classification Wang, Luoyan Zhou, Xiaogen Nie, Xingqing Lin, Xingtao Li, Jing Zheng, Haonan Xue, Ensheng Chen, Shun Chen, Cong Du, Min Tong, Tong Gao, Qinquan Zheng, Meijuan Front Neurosci Neuroscience Automated thyroid nodule classification in ultrasound images is an important way to detect thyroid nodules and to make a more accurate diagnosis. In this paper, we propose a novel deep convolutional neural network (CNN) model, called n-ClsNet, for thyroid nodule classification. Our model consists of a multi-scale classification layer, multiple skip blocks, and a hybrid atrous convolution (HAC) block. The multi-scale classification layer first obtains multi-scale feature maps in order to make full use of image features. After that, each skip-block propagates information at different scales to learn multi-scale features for image classification. Finally, the HAC block is used to replace the downpooling layer so that the spatial information can be fully learned. We have evaluated our n-ClsNet model on the TNUI-2021 dataset. The proposed n-ClsNet achieves an average accuracy (ACC) score of 93.8% in the thyroid nodule classification task, which outperforms several representative state-of-the-art classification methods. Frontiers Media S.A. 2022-05-19 /pmc/articles/PMC9160335/ /pubmed/35663553 http://dx.doi.org/10.3389/fnins.2022.878718 Text en Copyright © 2022 Wang, Zhou, Nie, Lin, Li, Zheng, Xue, Chen, Chen, Du, Tong, Gao and Zheng. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Wang, Luoyan Zhou, Xiaogen Nie, Xingqing Lin, Xingtao Li, Jing Zheng, Haonan Xue, Ensheng Chen, Shun Chen, Cong Du, Min Tong, Tong Gao, Qinquan Zheng, Meijuan A Multi-Scale Densely Connected Convolutional Neural Network for Automated Thyroid Nodule Classification |
title | A Multi-Scale Densely Connected Convolutional Neural Network for Automated Thyroid Nodule Classification |
title_full | A Multi-Scale Densely Connected Convolutional Neural Network for Automated Thyroid Nodule Classification |
title_fullStr | A Multi-Scale Densely Connected Convolutional Neural Network for Automated Thyroid Nodule Classification |
title_full_unstemmed | A Multi-Scale Densely Connected Convolutional Neural Network for Automated Thyroid Nodule Classification |
title_short | A Multi-Scale Densely Connected Convolutional Neural Network for Automated Thyroid Nodule Classification |
title_sort | multi-scale densely connected convolutional neural network for automated thyroid nodule classification |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9160335/ https://www.ncbi.nlm.nih.gov/pubmed/35663553 http://dx.doi.org/10.3389/fnins.2022.878718 |
work_keys_str_mv | AT wangluoyan amultiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification AT zhouxiaogen amultiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification AT niexingqing amultiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification AT linxingtao amultiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification AT lijing amultiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification AT zhenghaonan amultiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification AT xueensheng amultiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification AT chenshun amultiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification AT chencong amultiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification AT dumin amultiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification AT tongtong amultiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification AT gaoqinquan amultiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification AT zhengmeijuan amultiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification AT wangluoyan multiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification AT zhouxiaogen multiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification AT niexingqing multiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification AT linxingtao multiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification AT lijing multiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification AT zhenghaonan multiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification AT xueensheng multiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification AT chenshun multiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification AT chencong multiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification AT dumin multiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification AT tongtong multiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification AT gaoqinquan multiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification AT zhengmeijuan multiscaledenselyconnectedconvolutionalneuralnetworkforautomatedthyroidnoduleclassification |