Cargando…
Virtual-Augmented Reality and Life-Like Neurosurgical Simulator for Training: First Evaluation of a Hands-On Experience for Residents
BACKGROUND: In the recent years, growing interest in simulation-based surgical education has led to various practical alternatives for medical training. More recently, courses based on virtual reality (VR) and three-dimensional (3D)-printed models are available. In this paper, a hybrid (virtual and...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9160654/ https://www.ncbi.nlm.nih.gov/pubmed/35662818 http://dx.doi.org/10.3389/fsurg.2022.862948 |
_version_ | 1784719312606461952 |
---|---|
author | Petrone, Salvatore Cofano, Fabio Nicolosi, Federico Spena, Giannantonio Moschino, Marco Di Perna, Giuseppe Lavorato, Andrea Lanotte, Michele Maria Garbossa, Diego |
author_facet | Petrone, Salvatore Cofano, Fabio Nicolosi, Federico Spena, Giannantonio Moschino, Marco Di Perna, Giuseppe Lavorato, Andrea Lanotte, Michele Maria Garbossa, Diego |
author_sort | Petrone, Salvatore |
collection | PubMed |
description | BACKGROUND: In the recent years, growing interest in simulation-based surgical education has led to various practical alternatives for medical training. More recently, courses based on virtual reality (VR) and three-dimensional (3D)-printed models are available. In this paper, a hybrid (virtual and physical) neurosurgical simulator has been validated, equipped with augmented reality (AR) capabilities that can be used repeatedly to increase familiarity and improve the technical skills in human brain anatomy and neurosurgical approaches. METHODS: The neurosurgical simulator used in this study (UpSurgeOn Box, UpSurgeOn Srl, Assago, Milan) combines a virtual component and a physical component with an intermediate step to provide a hybrid solution. A first reported and evaluated practical experience on the anatomical 3D-printed model has been conducted with a total of 30 residents in neurosurgery. The residents had the possibility to choose a specific approach, focus on the correct patient positioning, and go over the chosen approach step-by-step, interacting with the model through AR application. Next, each practical surgical step on the 3D model was timed and qualitatively evaluated by 3 senior neurosurgeons. Quality and usability-grade surveys were filled out by participants. RESULTS: More than 89% of the residents assessed that the application and the AR simulator were very helpful in improving the orientation skills during neurosurgical approaches. Indeed, 89.3% of participants found brain and skull anatomy highly realistic during their tasks. Moreover, workshop exercises were considered useful in increasing the competency and technical skills required in the operating room by 85.8 and 84.7% of residents, respectively. Data collected confirmed that the anatomical model and its application were intuitive, well-integrated, and easy to use. CONCLUSION: The hybrid AR and 3D-printed neurosurgical simulator could be a valid tool for neurosurgical training, capable of enhancing personal technical skills and competence. In addition, it could be easy to imagine how patient safety would increase and healthcare costs would be reduced, even if more studies are needed to investigate these aspects. The integration of simulators for training in neurosurgery as preparatory steps for the operating room should be recommended and further investigated given their huge potential. |
format | Online Article Text |
id | pubmed-9160654 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-91606542022-06-03 Virtual-Augmented Reality and Life-Like Neurosurgical Simulator for Training: First Evaluation of a Hands-On Experience for Residents Petrone, Salvatore Cofano, Fabio Nicolosi, Federico Spena, Giannantonio Moschino, Marco Di Perna, Giuseppe Lavorato, Andrea Lanotte, Michele Maria Garbossa, Diego Front Surg Surgery BACKGROUND: In the recent years, growing interest in simulation-based surgical education has led to various practical alternatives for medical training. More recently, courses based on virtual reality (VR) and three-dimensional (3D)-printed models are available. In this paper, a hybrid (virtual and physical) neurosurgical simulator has been validated, equipped with augmented reality (AR) capabilities that can be used repeatedly to increase familiarity and improve the technical skills in human brain anatomy and neurosurgical approaches. METHODS: The neurosurgical simulator used in this study (UpSurgeOn Box, UpSurgeOn Srl, Assago, Milan) combines a virtual component and a physical component with an intermediate step to provide a hybrid solution. A first reported and evaluated practical experience on the anatomical 3D-printed model has been conducted with a total of 30 residents in neurosurgery. The residents had the possibility to choose a specific approach, focus on the correct patient positioning, and go over the chosen approach step-by-step, interacting with the model through AR application. Next, each practical surgical step on the 3D model was timed and qualitatively evaluated by 3 senior neurosurgeons. Quality and usability-grade surveys were filled out by participants. RESULTS: More than 89% of the residents assessed that the application and the AR simulator were very helpful in improving the orientation skills during neurosurgical approaches. Indeed, 89.3% of participants found brain and skull anatomy highly realistic during their tasks. Moreover, workshop exercises were considered useful in increasing the competency and technical skills required in the operating room by 85.8 and 84.7% of residents, respectively. Data collected confirmed that the anatomical model and its application were intuitive, well-integrated, and easy to use. CONCLUSION: The hybrid AR and 3D-printed neurosurgical simulator could be a valid tool for neurosurgical training, capable of enhancing personal technical skills and competence. In addition, it could be easy to imagine how patient safety would increase and healthcare costs would be reduced, even if more studies are needed to investigate these aspects. The integration of simulators for training in neurosurgery as preparatory steps for the operating room should be recommended and further investigated given their huge potential. Frontiers Media S.A. 2022-05-19 /pmc/articles/PMC9160654/ /pubmed/35662818 http://dx.doi.org/10.3389/fsurg.2022.862948 Text en Copyright © 2022 Petrone, Cofano, Nicolosi, Spena, Moschino, Di Perna, Lavorato, Lanotte and Garbossa. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Surgery Petrone, Salvatore Cofano, Fabio Nicolosi, Federico Spena, Giannantonio Moschino, Marco Di Perna, Giuseppe Lavorato, Andrea Lanotte, Michele Maria Garbossa, Diego Virtual-Augmented Reality and Life-Like Neurosurgical Simulator for Training: First Evaluation of a Hands-On Experience for Residents |
title | Virtual-Augmented Reality and Life-Like Neurosurgical Simulator for Training: First Evaluation of a Hands-On Experience for Residents |
title_full | Virtual-Augmented Reality and Life-Like Neurosurgical Simulator for Training: First Evaluation of a Hands-On Experience for Residents |
title_fullStr | Virtual-Augmented Reality and Life-Like Neurosurgical Simulator for Training: First Evaluation of a Hands-On Experience for Residents |
title_full_unstemmed | Virtual-Augmented Reality and Life-Like Neurosurgical Simulator for Training: First Evaluation of a Hands-On Experience for Residents |
title_short | Virtual-Augmented Reality and Life-Like Neurosurgical Simulator for Training: First Evaluation of a Hands-On Experience for Residents |
title_sort | virtual-augmented reality and life-like neurosurgical simulator for training: first evaluation of a hands-on experience for residents |
topic | Surgery |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9160654/ https://www.ncbi.nlm.nih.gov/pubmed/35662818 http://dx.doi.org/10.3389/fsurg.2022.862948 |
work_keys_str_mv | AT petronesalvatore virtualaugmentedrealityandlifelikeneurosurgicalsimulatorfortrainingfirstevaluationofahandsonexperienceforresidents AT cofanofabio virtualaugmentedrealityandlifelikeneurosurgicalsimulatorfortrainingfirstevaluationofahandsonexperienceforresidents AT nicolosifederico virtualaugmentedrealityandlifelikeneurosurgicalsimulatorfortrainingfirstevaluationofahandsonexperienceforresidents AT spenagiannantonio virtualaugmentedrealityandlifelikeneurosurgicalsimulatorfortrainingfirstevaluationofahandsonexperienceforresidents AT moschinomarco virtualaugmentedrealityandlifelikeneurosurgicalsimulatorfortrainingfirstevaluationofahandsonexperienceforresidents AT dipernagiuseppe virtualaugmentedrealityandlifelikeneurosurgicalsimulatorfortrainingfirstevaluationofahandsonexperienceforresidents AT lavoratoandrea virtualaugmentedrealityandlifelikeneurosurgicalsimulatorfortrainingfirstevaluationofahandsonexperienceforresidents AT lanottemichelemaria virtualaugmentedrealityandlifelikeneurosurgicalsimulatorfortrainingfirstevaluationofahandsonexperienceforresidents AT garbossadiego virtualaugmentedrealityandlifelikeneurosurgicalsimulatorfortrainingfirstevaluationofahandsonexperienceforresidents |