Cargando…

Sequence-based pangenomic core detection

One of the most basic kinds of analysis to be performed on a pangenome is the detection of its core, i.e., the information shared among all members. Pangenomic core detection is classically done on the gene level and many tools focus exclusively on core detection in prokaryotes. Here, we present a n...

Descripción completa

Detalles Bibliográficos
Autores principales: Schulz, Tizian, Wittler, Roland, Stoye, Jens
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9160775/
https://www.ncbi.nlm.nih.gov/pubmed/35663029
http://dx.doi.org/10.1016/j.isci.2022.104413
Descripción
Sumario:One of the most basic kinds of analysis to be performed on a pangenome is the detection of its core, i.e., the information shared among all members. Pangenomic core detection is classically done on the gene level and many tools focus exclusively on core detection in prokaryotes. Here, we present a new method for sequence-based pangenomic core detection. Our model generalizes from a strict core definition allowing us to flexibly determine suitable core properties depending on the research question and the dataset under consideration. We propose an algorithm based on a colored de Bruijn graph that runs in linear time with respect to the number of k-mers in the graph. An implementation of our method is called Corer. Because of the usage of a colored de Bruijn graph, it works alignment-free, is provided with a small memory footprint, and accepts as input assembled genomes as well as sequencing reads.