Cargando…
Interpretable Machine Learning Modeling for Ischemic Stroke Outcome Prediction
BACKGROUND AND PURPOSE: Mechanical thrombectomy greatly improves stroke outcomes. Nonetheless, some patients fall short of full recovery despite good reperfusion. The purpose of this study was to develop machine learning (ML) models for the pre-interventional prediction of functional outcome at 3 mo...
Autores principales: | Jabal, Mohamed Sobhi, Joly, Olivier, Kallmes, David, Harston, George, Rabinstein, Alejandro, Huynh, Thien, Brinjikji, Waleed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9160988/ https://www.ncbi.nlm.nih.gov/pubmed/35665041 http://dx.doi.org/10.3389/fneur.2022.884693 |
Ejemplares similares
-
Transient Ischemic Attacks Preceding Ischemic Stroke and the Possible Preconditioning of the Human Brain: A Systematic Review and Meta-Analysis
por: Ghozy, Sherief, et al.
Publicado: (2021) -
Tenecteplase vs. alteplase for treatment of acute ischemic stroke: A systematic review and meta-analysis of randomized trials
por: Kobeissi, Hassan, et al.
Publicado: (2023) -
Bibliometric Trends in Open Surgical and Endovascular Cerebrovascular Research
por: Yuen, Jason, et al.
Publicado: (2022) -
Remote ischemic conditioning approach for the treatment of ischemic stroke
por: Mohammad Seyedsaadat, Seyed, et al.
Publicado: (2019) -
Neuroprotection in Acute Ischemic Stroke: A Battle Against the Biology of Nature
por: Ghozy, Sherief, et al.
Publicado: (2022)