Cargando…
A Segmentation-Guided Deep Learning Framework for Leaf Counting
Deep learning-based methods have recently provided a means to rapidly and effectively extract various plant traits due to their powerful ability to depict a plant image across a variety of species and growth conditions. In this study, we focus on dealing with two fundamental tasks in plant phenotypi...
Autores principales: | Fan, Xijian, Zhou, Rui, Tjahjadi, Tardi, Das Choudhury, Sruti, Ye, Qiaolin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9161279/ https://www.ncbi.nlm.nih.gov/pubmed/35665165 http://dx.doi.org/10.3389/fpls.2022.844522 |
Ejemplares similares
-
From Laboratory to Field: Unsupervised Domain Adaptation for Plant Disease Recognition in the Wild
por: Wu, Xinlu, et al.
Publicado: (2023) -
A Multiscale Point-Supervised Network for Counting Maize Tassels in the Wild
por: Zheng, Haoyu, et al.
Publicado: (2023) -
EmergeNet: A novel deep-learning based ensemble segmentation model for emergence timing detection of coleoptile
por: Das, Aankit, et al.
Publicado: (2023) -
Semi-supervised Learning for Weed and Crop Segmentation Using UAV Imagery
por: Nong, Chunshi, et al.
Publicado: (2022) -
OSC-CO(2): coattention and cosegmentation framework for plant state change with multiple features
por: Quiñones, Rubi, et al.
Publicado: (2023)