Cargando…

A CT‐based radiomics model to predict subsequent brain metastasis in patients with ALK‐rearranged non–small cell lung cancer undergoing crizotinib treatment

BACKGROUND: Brain metastasis (BM) comprises the most common reason for crizotinib failure in patients with anaplastic lymphoma kinase (ALK)‐rearranged non–small cell lung cancer (NSCLC). We hypothesize that its occurrence could be predicted by a computed tomography (CT)‐based radiomics model, theref...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Yongluo, Wang, Yixing, Fu, Sha, Chen, Tao, Zhou, Yixin, Zhang, Xuanye, Chen, Chen, He, Li‐na, Du, Wei, Li, Haifeng, Lin, Zuan, Zhao, Yuanyuan, Yang, Yunpeng, Zhao, Hongyun, Fang, Wenfeng, Huang, Yan, Hong, Shaodong, Zhang, Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons Australia, Ltd 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9161316/
https://www.ncbi.nlm.nih.gov/pubmed/35437945
http://dx.doi.org/10.1111/1759-7714.14386
_version_ 1784719457385447424
author Jiang, Yongluo
Wang, Yixing
Fu, Sha
Chen, Tao
Zhou, Yixin
Zhang, Xuanye
Chen, Chen
He, Li‐na
Du, Wei
Li, Haifeng
Lin, Zuan
Zhao, Yuanyuan
Yang, Yunpeng
Zhao, Hongyun
Fang, Wenfeng
Huang, Yan
Hong, Shaodong
Zhang, Li
author_facet Jiang, Yongluo
Wang, Yixing
Fu, Sha
Chen, Tao
Zhou, Yixin
Zhang, Xuanye
Chen, Chen
He, Li‐na
Du, Wei
Li, Haifeng
Lin, Zuan
Zhao, Yuanyuan
Yang, Yunpeng
Zhao, Hongyun
Fang, Wenfeng
Huang, Yan
Hong, Shaodong
Zhang, Li
author_sort Jiang, Yongluo
collection PubMed
description BACKGROUND: Brain metastasis (BM) comprises the most common reason for crizotinib failure in patients with anaplastic lymphoma kinase (ALK)‐rearranged non–small cell lung cancer (NSCLC). We hypothesize that its occurrence could be predicted by a computed tomography (CT)‐based radiomics model, therefore, allowing for selection of enriched patient populations for prevention therapies. METHODS: A total of 75 eligible patients were enrolled from Sun Yat‐sen University Cancer Center between June 2014 and September 2019. The primary endpoint was brain metastasis‐free survival (BMFS), estimated from the initiation of crizotinib to the date of the occurrence of BM. Patients were randomly divided into two cohorts for model training (n = 51) and validation (n = 24), respectively. A radiomics signature was constructed based on features extracted from chest CT before crizotinib treatment. Clinical model was developed using the Cox proportional hazards model. Log‐rank test was performed to describe the difference of BMFS risk. RESULTS: Patients with low radiomics score had significantly longer BMFS than those with higher, both in the training cohort (p = 0.019) and validation cohort (p = 0.048). The nomogram combining smoking history and the radiomics signature showed good performance for the estimation of BMFS, both in the training (concordance index [C‐index], 0.762; 95% confidence interval [CI], 0.663–0.861) and validation cohort (C‐index, 0.724; 95% CI, 0.601–0.847). CONCLUSION: We have developed a CT‐based radiomics model to predict subsequent BM in patients with non‐brain metastatic NSCLC undergoing crizotinib treatment. Selection of an enriched patient population at high BM risk will facilitate the design of clinical trials or strategies to prevent BM.
format Online
Article
Text
id pubmed-9161316
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley & Sons Australia, Ltd
record_format MEDLINE/PubMed
spelling pubmed-91613162022-06-04 A CT‐based radiomics model to predict subsequent brain metastasis in patients with ALK‐rearranged non–small cell lung cancer undergoing crizotinib treatment Jiang, Yongluo Wang, Yixing Fu, Sha Chen, Tao Zhou, Yixin Zhang, Xuanye Chen, Chen He, Li‐na Du, Wei Li, Haifeng Lin, Zuan Zhao, Yuanyuan Yang, Yunpeng Zhao, Hongyun Fang, Wenfeng Huang, Yan Hong, Shaodong Zhang, Li Thorac Cancer Original Articles BACKGROUND: Brain metastasis (BM) comprises the most common reason for crizotinib failure in patients with anaplastic lymphoma kinase (ALK)‐rearranged non–small cell lung cancer (NSCLC). We hypothesize that its occurrence could be predicted by a computed tomography (CT)‐based radiomics model, therefore, allowing for selection of enriched patient populations for prevention therapies. METHODS: A total of 75 eligible patients were enrolled from Sun Yat‐sen University Cancer Center between June 2014 and September 2019. The primary endpoint was brain metastasis‐free survival (BMFS), estimated from the initiation of crizotinib to the date of the occurrence of BM. Patients were randomly divided into two cohorts for model training (n = 51) and validation (n = 24), respectively. A radiomics signature was constructed based on features extracted from chest CT before crizotinib treatment. Clinical model was developed using the Cox proportional hazards model. Log‐rank test was performed to describe the difference of BMFS risk. RESULTS: Patients with low radiomics score had significantly longer BMFS than those with higher, both in the training cohort (p = 0.019) and validation cohort (p = 0.048). The nomogram combining smoking history and the radiomics signature showed good performance for the estimation of BMFS, both in the training (concordance index [C‐index], 0.762; 95% confidence interval [CI], 0.663–0.861) and validation cohort (C‐index, 0.724; 95% CI, 0.601–0.847). CONCLUSION: We have developed a CT‐based radiomics model to predict subsequent BM in patients with non‐brain metastatic NSCLC undergoing crizotinib treatment. Selection of an enriched patient population at high BM risk will facilitate the design of clinical trials or strategies to prevent BM. John Wiley & Sons Australia, Ltd 2022-04-18 2022-06 /pmc/articles/PMC9161316/ /pubmed/35437945 http://dx.doi.org/10.1111/1759-7714.14386 Text en © 2022 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Original Articles
Jiang, Yongluo
Wang, Yixing
Fu, Sha
Chen, Tao
Zhou, Yixin
Zhang, Xuanye
Chen, Chen
He, Li‐na
Du, Wei
Li, Haifeng
Lin, Zuan
Zhao, Yuanyuan
Yang, Yunpeng
Zhao, Hongyun
Fang, Wenfeng
Huang, Yan
Hong, Shaodong
Zhang, Li
A CT‐based radiomics model to predict subsequent brain metastasis in patients with ALK‐rearranged non–small cell lung cancer undergoing crizotinib treatment
title A CT‐based radiomics model to predict subsequent brain metastasis in patients with ALK‐rearranged non–small cell lung cancer undergoing crizotinib treatment
title_full A CT‐based radiomics model to predict subsequent brain metastasis in patients with ALK‐rearranged non–small cell lung cancer undergoing crizotinib treatment
title_fullStr A CT‐based radiomics model to predict subsequent brain metastasis in patients with ALK‐rearranged non–small cell lung cancer undergoing crizotinib treatment
title_full_unstemmed A CT‐based radiomics model to predict subsequent brain metastasis in patients with ALK‐rearranged non–small cell lung cancer undergoing crizotinib treatment
title_short A CT‐based radiomics model to predict subsequent brain metastasis in patients with ALK‐rearranged non–small cell lung cancer undergoing crizotinib treatment
title_sort ct‐based radiomics model to predict subsequent brain metastasis in patients with alk‐rearranged non–small cell lung cancer undergoing crizotinib treatment
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9161316/
https://www.ncbi.nlm.nih.gov/pubmed/35437945
http://dx.doi.org/10.1111/1759-7714.14386
work_keys_str_mv AT jiangyongluo actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT wangyixing actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT fusha actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT chentao actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT zhouyixin actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT zhangxuanye actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT chenchen actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT helina actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT duwei actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT lihaifeng actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT linzuan actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT zhaoyuanyuan actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT yangyunpeng actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT zhaohongyun actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT fangwenfeng actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT huangyan actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT hongshaodong actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT zhangli actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT jiangyongluo ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT wangyixing ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT fusha ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT chentao ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT zhouyixin ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT zhangxuanye ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT chenchen ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT helina ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT duwei ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT lihaifeng ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT linzuan ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT zhaoyuanyuan ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT yangyunpeng ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT zhaohongyun ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT fangwenfeng ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT huangyan ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT hongshaodong ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment
AT zhangli ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment