Cargando…
A CT‐based radiomics model to predict subsequent brain metastasis in patients with ALK‐rearranged non–small cell lung cancer undergoing crizotinib treatment
BACKGROUND: Brain metastasis (BM) comprises the most common reason for crizotinib failure in patients with anaplastic lymphoma kinase (ALK)‐rearranged non–small cell lung cancer (NSCLC). We hypothesize that its occurrence could be predicted by a computed tomography (CT)‐based radiomics model, theref...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons Australia, Ltd
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9161316/ https://www.ncbi.nlm.nih.gov/pubmed/35437945 http://dx.doi.org/10.1111/1759-7714.14386 |
_version_ | 1784719457385447424 |
---|---|
author | Jiang, Yongluo Wang, Yixing Fu, Sha Chen, Tao Zhou, Yixin Zhang, Xuanye Chen, Chen He, Li‐na Du, Wei Li, Haifeng Lin, Zuan Zhao, Yuanyuan Yang, Yunpeng Zhao, Hongyun Fang, Wenfeng Huang, Yan Hong, Shaodong Zhang, Li |
author_facet | Jiang, Yongluo Wang, Yixing Fu, Sha Chen, Tao Zhou, Yixin Zhang, Xuanye Chen, Chen He, Li‐na Du, Wei Li, Haifeng Lin, Zuan Zhao, Yuanyuan Yang, Yunpeng Zhao, Hongyun Fang, Wenfeng Huang, Yan Hong, Shaodong Zhang, Li |
author_sort | Jiang, Yongluo |
collection | PubMed |
description | BACKGROUND: Brain metastasis (BM) comprises the most common reason for crizotinib failure in patients with anaplastic lymphoma kinase (ALK)‐rearranged non–small cell lung cancer (NSCLC). We hypothesize that its occurrence could be predicted by a computed tomography (CT)‐based radiomics model, therefore, allowing for selection of enriched patient populations for prevention therapies. METHODS: A total of 75 eligible patients were enrolled from Sun Yat‐sen University Cancer Center between June 2014 and September 2019. The primary endpoint was brain metastasis‐free survival (BMFS), estimated from the initiation of crizotinib to the date of the occurrence of BM. Patients were randomly divided into two cohorts for model training (n = 51) and validation (n = 24), respectively. A radiomics signature was constructed based on features extracted from chest CT before crizotinib treatment. Clinical model was developed using the Cox proportional hazards model. Log‐rank test was performed to describe the difference of BMFS risk. RESULTS: Patients with low radiomics score had significantly longer BMFS than those with higher, both in the training cohort (p = 0.019) and validation cohort (p = 0.048). The nomogram combining smoking history and the radiomics signature showed good performance for the estimation of BMFS, both in the training (concordance index [C‐index], 0.762; 95% confidence interval [CI], 0.663–0.861) and validation cohort (C‐index, 0.724; 95% CI, 0.601–0.847). CONCLUSION: We have developed a CT‐based radiomics model to predict subsequent BM in patients with non‐brain metastatic NSCLC undergoing crizotinib treatment. Selection of an enriched patient population at high BM risk will facilitate the design of clinical trials or strategies to prevent BM. |
format | Online Article Text |
id | pubmed-9161316 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley & Sons Australia, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-91613162022-06-04 A CT‐based radiomics model to predict subsequent brain metastasis in patients with ALK‐rearranged non–small cell lung cancer undergoing crizotinib treatment Jiang, Yongluo Wang, Yixing Fu, Sha Chen, Tao Zhou, Yixin Zhang, Xuanye Chen, Chen He, Li‐na Du, Wei Li, Haifeng Lin, Zuan Zhao, Yuanyuan Yang, Yunpeng Zhao, Hongyun Fang, Wenfeng Huang, Yan Hong, Shaodong Zhang, Li Thorac Cancer Original Articles BACKGROUND: Brain metastasis (BM) comprises the most common reason for crizotinib failure in patients with anaplastic lymphoma kinase (ALK)‐rearranged non–small cell lung cancer (NSCLC). We hypothesize that its occurrence could be predicted by a computed tomography (CT)‐based radiomics model, therefore, allowing for selection of enriched patient populations for prevention therapies. METHODS: A total of 75 eligible patients were enrolled from Sun Yat‐sen University Cancer Center between June 2014 and September 2019. The primary endpoint was brain metastasis‐free survival (BMFS), estimated from the initiation of crizotinib to the date of the occurrence of BM. Patients were randomly divided into two cohorts for model training (n = 51) and validation (n = 24), respectively. A radiomics signature was constructed based on features extracted from chest CT before crizotinib treatment. Clinical model was developed using the Cox proportional hazards model. Log‐rank test was performed to describe the difference of BMFS risk. RESULTS: Patients with low radiomics score had significantly longer BMFS than those with higher, both in the training cohort (p = 0.019) and validation cohort (p = 0.048). The nomogram combining smoking history and the radiomics signature showed good performance for the estimation of BMFS, both in the training (concordance index [C‐index], 0.762; 95% confidence interval [CI], 0.663–0.861) and validation cohort (C‐index, 0.724; 95% CI, 0.601–0.847). CONCLUSION: We have developed a CT‐based radiomics model to predict subsequent BM in patients with non‐brain metastatic NSCLC undergoing crizotinib treatment. Selection of an enriched patient population at high BM risk will facilitate the design of clinical trials or strategies to prevent BM. John Wiley & Sons Australia, Ltd 2022-04-18 2022-06 /pmc/articles/PMC9161316/ /pubmed/35437945 http://dx.doi.org/10.1111/1759-7714.14386 Text en © 2022 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Original Articles Jiang, Yongluo Wang, Yixing Fu, Sha Chen, Tao Zhou, Yixin Zhang, Xuanye Chen, Chen He, Li‐na Du, Wei Li, Haifeng Lin, Zuan Zhao, Yuanyuan Yang, Yunpeng Zhao, Hongyun Fang, Wenfeng Huang, Yan Hong, Shaodong Zhang, Li A CT‐based radiomics model to predict subsequent brain metastasis in patients with ALK‐rearranged non–small cell lung cancer undergoing crizotinib treatment |
title | A CT‐based radiomics model to predict subsequent brain metastasis in patients with ALK‐rearranged non–small cell lung cancer undergoing crizotinib treatment |
title_full | A CT‐based radiomics model to predict subsequent brain metastasis in patients with ALK‐rearranged non–small cell lung cancer undergoing crizotinib treatment |
title_fullStr | A CT‐based radiomics model to predict subsequent brain metastasis in patients with ALK‐rearranged non–small cell lung cancer undergoing crizotinib treatment |
title_full_unstemmed | A CT‐based radiomics model to predict subsequent brain metastasis in patients with ALK‐rearranged non–small cell lung cancer undergoing crizotinib treatment |
title_short | A CT‐based radiomics model to predict subsequent brain metastasis in patients with ALK‐rearranged non–small cell lung cancer undergoing crizotinib treatment |
title_sort | ct‐based radiomics model to predict subsequent brain metastasis in patients with alk‐rearranged non–small cell lung cancer undergoing crizotinib treatment |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9161316/ https://www.ncbi.nlm.nih.gov/pubmed/35437945 http://dx.doi.org/10.1111/1759-7714.14386 |
work_keys_str_mv | AT jiangyongluo actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment AT wangyixing actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment AT fusha actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment AT chentao actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment AT zhouyixin actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment AT zhangxuanye actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment AT chenchen actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment AT helina actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment AT duwei actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment AT lihaifeng actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment AT linzuan actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment AT zhaoyuanyuan actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment AT yangyunpeng actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment AT zhaohongyun actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment AT fangwenfeng actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment AT huangyan actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment AT hongshaodong actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment AT zhangli actbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment AT jiangyongluo ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment AT wangyixing ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment AT fusha ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment AT chentao ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment AT zhouyixin ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment AT zhangxuanye ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment AT chenchen ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment AT helina ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment AT duwei ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment AT lihaifeng ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment AT linzuan ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment AT zhaoyuanyuan ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment AT yangyunpeng ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment AT zhaohongyun ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment AT fangwenfeng ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment AT huangyan ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment AT hongshaodong ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment AT zhangli ctbasedradiomicsmodeltopredictsubsequentbrainmetastasisinpatientswithalkrearrangednonsmallcelllungcancerundergoingcrizotinibtreatment |