Cargando…

Inherent constraints on a polyfunctional tissue lead to a reproduction-immunity tradeoff

BACKGROUND: Single tissues can have multiple functions, which can result in constraints, impaired function, and tradeoffs. The insect fat body performs remarkably diverse functions including metabolic control, reproductive provisioning, and systemic immune responses. How polyfunctional tissues simul...

Descripción completa

Detalles Bibliográficos
Autores principales: Gupta, Vanika, Frank, Ashley M., Matolka, Nick, Lazzaro, Brian P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9161490/
https://www.ncbi.nlm.nih.gov/pubmed/35655304
http://dx.doi.org/10.1186/s12915-022-01328-w
Descripción
Sumario:BACKGROUND: Single tissues can have multiple functions, which can result in constraints, impaired function, and tradeoffs. The insect fat body performs remarkably diverse functions including metabolic control, reproductive provisioning, and systemic immune responses. How polyfunctional tissues simultaneously execute multiple distinct physiological functions is generally unknown. Immunity and reproduction are observed to trade off in many organisms but the mechanistic basis for this tradeoff is also typically not known. Here we investigate constraints and trade-offs in the polyfunctional insect fat body. RESULTS: Using single-nucleus sequencing, we determined that the Drosophila melanogaster fat body executes diverse basal functions with heterogenous cellular subpopulations. The size and identity of these subpopulations are remarkably stable between virgin and mated flies, as well as before and after infection. However, as an emergency function, the immune response engages the entire tissue and all cellular subpopulations produce induce expression of defense genes. We found that reproductively active females who were given bacterial infection exhibited signatures of ER stress and impaired capacity to synthesize new protein in response to infection, including decreased capacity to produce antimicrobial peptides. Transient provision of a reversible translation inhibitor to mated females prior to infection rescued general protein synthesis, specific production of antimicrobial peptides, and survival of infection. CONCLUSIONS: The commonly observed tradeoff between reproduction and immunity appears to be driven, in D. melanogaster, by a failure of the fat body to be able to handle simultaneous protein translation demands of reproductive provisioning and immune defense. We suggest that inherent cellular limitations in tissues that perform multiple functions may provide a general explanation for the wide prevalence of physiological and evolutionary tradeoffs. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12915-022-01328-w.