Cargando…

Seed Germination Response and Tolerance to Different Abiotic Stresses of Four Salsola Species Growing in an Arid Environment

Land degradation caused by soil salinization and wind erosion is the major obstruction to sustainable agriculture in the arid region. Salsola species have the potential to prevent land degradation. However, there is limited information about seed germination requirements and tolerance to salinity an...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Pengyou, Jiang, Li, Yang, Weikang, Wang, Lei, Wen, Zhibin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9161727/
https://www.ncbi.nlm.nih.gov/pubmed/35665147
http://dx.doi.org/10.3389/fpls.2022.892667
Descripción
Sumario:Land degradation caused by soil salinization and wind erosion is the major obstruction to sustainable agriculture in the arid region. Salsola species have the potential to prevent land degradation. However, there is limited information about seed germination requirements and tolerance to salinity and drought for representative Salsola species. This study aimed to assess the effects of the winged perianth (seed structural features) and abiotic factors (light, temperature, salinity, and drought) on the seed germination of these species. These Salsola species varied considerably in seed germination characteristics. Compared with naked seeds, winged seeds had lower germination percentages for S. heptapotamica S. rosacea, and S. nitraria species. Darkness decreased the germination percentage of winged and naked seeds of S. rosacea, however, for S. heptapotamica and S. nitraria, decreased seed germination was only when the winged perianth existed. Germination of S. heptapotamica, S. rosacea, and S. nitraria seeds depended on the perianth and light conditions. The naked seeds of these three species could germinate at a wide range of temperatures, especially in light. The presence of perianth, light, and temperature did not significantly influence the germination of S. ruthenica seeds. When cultivating these species, it is beneficial to remove the winged perianth of seeds and sow it on the soil surface when the temperature is above 5/15°C. In addition, seed germination of Salsola displayed high tolerance to salinity and drought. Compared with winged seeds, naked seeds showed lower recovery germination under high salinity but had a similar recovery of germination under high PEG concentration. Our study provides detailed germination information for the cultivation of these four representative Salsola species in degraded saline soils of the arid zone.