Cargando…
A Systematic Framework for Identifying Prognostic Genes in the Tumor Microenvironment of Colon Cancer
As one of the most common cancers of the digestive system, colon cancer is a predominant cause of cancer-related deaths worldwide. To investigate prognostic genes in the tumor microenvironment of colon cancer, we collected 461 colon adenocarcinoma (COAD) and 172 rectal adenocarcinoma (READ) samples...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9161737/ https://www.ncbi.nlm.nih.gov/pubmed/35664768 http://dx.doi.org/10.3389/fonc.2022.899156 |
_version_ | 1784719548319006720 |
---|---|
author | Liu, Jinyang Lan, Yu Tian, Geng Yang, Jialiang |
author_facet | Liu, Jinyang Lan, Yu Tian, Geng Yang, Jialiang |
author_sort | Liu, Jinyang |
collection | PubMed |
description | As one of the most common cancers of the digestive system, colon cancer is a predominant cause of cancer-related deaths worldwide. To investigate prognostic genes in the tumor microenvironment of colon cancer, we collected 461 colon adenocarcinoma (COAD) and 172 rectal adenocarcinoma (READ) samples from The Cancer Genome Atlas (TCGA) database, and calculated the stromal and immune scores of each sample. We demonstrated that stromal and immune scores were significantly associated with colon cancer stages. By analyzing differentially expressed genes (DEGs) between two stromal and immune score groups, we identified 952 common DEGs. The significantly enriched Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms for these DEGs were associated with T-cell activation, immune receptor activity, and cytokine–cytokine receptor interaction. Through univariate Cox regression analysis, we identified 22 prognostic genes. Furthermore, nine key prognostic genes, namely, HOXC8, SRPX, CCL22, CD72, IGLON5, SERPING1, PCOLCE2, FABP4, and ARL4C, were identified using the LASSO Cox regression analysis. The risk score of each sample was calculated using the gene expression of the nine genes. Patients with high-risk scores had a poorer prognosis than those with low-risk scores. The prognostic model established with the nine-gene signature was able to effectively predict the outcome of colon cancer patients. Our findings may help in the clinical decisions and improve the prognosis for colon cancer. |
format | Online Article Text |
id | pubmed-9161737 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-91617372022-06-03 A Systematic Framework for Identifying Prognostic Genes in the Tumor Microenvironment of Colon Cancer Liu, Jinyang Lan, Yu Tian, Geng Yang, Jialiang Front Oncol Oncology As one of the most common cancers of the digestive system, colon cancer is a predominant cause of cancer-related deaths worldwide. To investigate prognostic genes in the tumor microenvironment of colon cancer, we collected 461 colon adenocarcinoma (COAD) and 172 rectal adenocarcinoma (READ) samples from The Cancer Genome Atlas (TCGA) database, and calculated the stromal and immune scores of each sample. We demonstrated that stromal and immune scores were significantly associated with colon cancer stages. By analyzing differentially expressed genes (DEGs) between two stromal and immune score groups, we identified 952 common DEGs. The significantly enriched Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms for these DEGs were associated with T-cell activation, immune receptor activity, and cytokine–cytokine receptor interaction. Through univariate Cox regression analysis, we identified 22 prognostic genes. Furthermore, nine key prognostic genes, namely, HOXC8, SRPX, CCL22, CD72, IGLON5, SERPING1, PCOLCE2, FABP4, and ARL4C, were identified using the LASSO Cox regression analysis. The risk score of each sample was calculated using the gene expression of the nine genes. Patients with high-risk scores had a poorer prognosis than those with low-risk scores. The prognostic model established with the nine-gene signature was able to effectively predict the outcome of colon cancer patients. Our findings may help in the clinical decisions and improve the prognosis for colon cancer. Frontiers Media S.A. 2022-05-19 /pmc/articles/PMC9161737/ /pubmed/35664768 http://dx.doi.org/10.3389/fonc.2022.899156 Text en Copyright © 2022 Liu, Lan, Tian and Yang https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Oncology Liu, Jinyang Lan, Yu Tian, Geng Yang, Jialiang A Systematic Framework for Identifying Prognostic Genes in the Tumor Microenvironment of Colon Cancer |
title | A Systematic Framework for Identifying Prognostic Genes in the Tumor Microenvironment of Colon Cancer |
title_full | A Systematic Framework for Identifying Prognostic Genes in the Tumor Microenvironment of Colon Cancer |
title_fullStr | A Systematic Framework for Identifying Prognostic Genes in the Tumor Microenvironment of Colon Cancer |
title_full_unstemmed | A Systematic Framework for Identifying Prognostic Genes in the Tumor Microenvironment of Colon Cancer |
title_short | A Systematic Framework for Identifying Prognostic Genes in the Tumor Microenvironment of Colon Cancer |
title_sort | systematic framework for identifying prognostic genes in the tumor microenvironment of colon cancer |
topic | Oncology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9161737/ https://www.ncbi.nlm.nih.gov/pubmed/35664768 http://dx.doi.org/10.3389/fonc.2022.899156 |
work_keys_str_mv | AT liujinyang asystematicframeworkforidentifyingprognosticgenesinthetumormicroenvironmentofcoloncancer AT lanyu asystematicframeworkforidentifyingprognosticgenesinthetumormicroenvironmentofcoloncancer AT tiangeng asystematicframeworkforidentifyingprognosticgenesinthetumormicroenvironmentofcoloncancer AT yangjialiang asystematicframeworkforidentifyingprognosticgenesinthetumormicroenvironmentofcoloncancer AT liujinyang systematicframeworkforidentifyingprognosticgenesinthetumormicroenvironmentofcoloncancer AT lanyu systematicframeworkforidentifyingprognosticgenesinthetumormicroenvironmentofcoloncancer AT tiangeng systematicframeworkforidentifyingprognosticgenesinthetumormicroenvironmentofcoloncancer AT yangjialiang systematicframeworkforidentifyingprognosticgenesinthetumormicroenvironmentofcoloncancer |