Cargando…
Recursive Training Strategy for a Deep Learning Network for Segmentation of Pathology Nuclei With Incomplete Annotation
This study developed a recursive training strategy to train a deep learning model for nuclei detection and segmentation using incomplete annotation. A dataset of 141 H&E stained breast cancer pathologic images with incomplete annotation was randomly split into training/validation set and test se...
Autores principales: | ZHOU, CHUAN, CHAN, HEANG-PING, HADJIISKI, LUBOMIR M., CHUGHTAI, AAMER |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9161776/ https://www.ncbi.nlm.nih.gov/pubmed/35665366 http://dx.doi.org/10.1109/access.2022.3172958 |
Ejemplares similares
-
Hybrid U‐Net‐based deep learning model for volume segmentation of lung nodules in CT images
por: Wang, Yifan, et al.
Publicado: (2022) -
Best-Quality Vessel Identification Using Vessel Quality Measure in Multiple-Phase Coronary CT Angiography
por: Hadjiiski, Lubomir, et al.
Publicado: (2016) -
Improved Repeatability of Mouse Tibia Volume Segmentation in Murine Myelofibrosis Model Using Deep Learning
por: Kushwaha, Aman, et al.
Publicado: (2023) -
Bladder Cancer Segmentation in CT for Treatment Response Assessment: Application of Deep-Learning Convolution Neural Network—A Pilot Study
por: Cha, Kenny H., et al.
Publicado: (2016) -
Survival Prediction of Patients with Bladder Cancer after Cystectomy Based on Clinical, Radiomics, and Deep-Learning Descriptors
por: Sun, Di, et al.
Publicado: (2023)