Cargando…
Enhanced diffusion by reversible binding to active polymers
Cells are known to use reversible binding to active biopolymer networks to allow diffusive transport of particles in an otherwise impenetrable mesh. We here determine the motion of a particle that experiences random forces during binding and unbinding events while being constrained by attached polym...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9161825/ https://www.ncbi.nlm.nih.gov/pubmed/35663922 http://dx.doi.org/10.1021/acs.macromol.0c02306 |
_version_ | 1784719561489121280 |
---|---|
author | Sridhar, Shankar Lalitha Dunagin, Jeffrey Koo, Kanghyeon Hough, Loren Vernerey, Franck |
author_facet | Sridhar, Shankar Lalitha Dunagin, Jeffrey Koo, Kanghyeon Hough, Loren Vernerey, Franck |
author_sort | Sridhar, Shankar Lalitha |
collection | PubMed |
description | Cells are known to use reversible binding to active biopolymer networks to allow diffusive transport of particles in an otherwise impenetrable mesh. We here determine the motion of a particle that experiences random forces during binding and unbinding events while being constrained by attached polymers. Using Monte-Carlo simulations and a statistical mechanics model, we find that enhanced diffusion is possible with active polymers. However, this is possible only under optimum conditions that has to do with the relative length of the chains to that of the plate. For example, in systems where the plate is shorter than the chains, diffusion is maximum when many chains have the potential to bind but few remain bound at any one time. Interestingly, if the chains are shorter than the plate, we find that diffusion is maximized when more active chains remain transiently bound. The model provides insight into these findings by elucidating the mechanisms for binding-mediated diffusion in biology and design rules for macromolecular transport in transient synthetic polymers. |
format | Online Article Text |
id | pubmed-9161825 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-91618252022-06-02 Enhanced diffusion by reversible binding to active polymers Sridhar, Shankar Lalitha Dunagin, Jeffrey Koo, Kanghyeon Hough, Loren Vernerey, Franck Macromolecules Article Cells are known to use reversible binding to active biopolymer networks to allow diffusive transport of particles in an otherwise impenetrable mesh. We here determine the motion of a particle that experiences random forces during binding and unbinding events while being constrained by attached polymers. Using Monte-Carlo simulations and a statistical mechanics model, we find that enhanced diffusion is possible with active polymers. However, this is possible only under optimum conditions that has to do with the relative length of the chains to that of the plate. For example, in systems where the plate is shorter than the chains, diffusion is maximum when many chains have the potential to bind but few remain bound at any one time. Interestingly, if the chains are shorter than the plate, we find that diffusion is maximized when more active chains remain transiently bound. The model provides insight into these findings by elucidating the mechanisms for binding-mediated diffusion in biology and design rules for macromolecular transport in transient synthetic polymers. 2021-02-23 2021-02-10 /pmc/articles/PMC9161825/ /pubmed/35663922 http://dx.doi.org/10.1021/acs.macromol.0c02306 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/It is made available under a CC-BY-NC-ND 4.0 International license (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Article Sridhar, Shankar Lalitha Dunagin, Jeffrey Koo, Kanghyeon Hough, Loren Vernerey, Franck Enhanced diffusion by reversible binding to active polymers |
title | Enhanced diffusion by reversible binding to active polymers |
title_full | Enhanced diffusion by reversible binding to active polymers |
title_fullStr | Enhanced diffusion by reversible binding to active polymers |
title_full_unstemmed | Enhanced diffusion by reversible binding to active polymers |
title_short | Enhanced diffusion by reversible binding to active polymers |
title_sort | enhanced diffusion by reversible binding to active polymers |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9161825/ https://www.ncbi.nlm.nih.gov/pubmed/35663922 http://dx.doi.org/10.1021/acs.macromol.0c02306 |
work_keys_str_mv | AT sridharshankarlalitha enhanceddiffusionbyreversiblebindingtoactivepolymers AT dunaginjeffrey enhanceddiffusionbyreversiblebindingtoactivepolymers AT kookanghyeon enhanceddiffusionbyreversiblebindingtoactivepolymers AT houghloren enhanceddiffusionbyreversiblebindingtoactivepolymers AT vernereyfranck enhanceddiffusionbyreversiblebindingtoactivepolymers |