Cargando…

Bacterial Cellulose Production from agricultural Residues by two Komagataeibacter sp. Strains

Agricultural residues are constantly increasing with increased farming processes, and improper disposal is detrimental to the environment. Majority of these waste residues are rich in lignocellulose, which makes them suitable substrate for bacterial fermentation in the production of value-added prod...

Descripción completa

Detalles Bibliográficos
Autores principales: Akintunde, Moyinoluwa O., Adebayo-Tayo, Bukola C., Ishola, Mofoluwake M., Zamani, Akram, Horváth, Ilona Sárvári
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9161868/
https://www.ncbi.nlm.nih.gov/pubmed/35416127
http://dx.doi.org/10.1080/21655979.2022.2062970
_version_ 1784719572611366912
author Akintunde, Moyinoluwa O.
Adebayo-Tayo, Bukola C.
Ishola, Mofoluwake M.
Zamani, Akram
Horváth, Ilona Sárvári
author_facet Akintunde, Moyinoluwa O.
Adebayo-Tayo, Bukola C.
Ishola, Mofoluwake M.
Zamani, Akram
Horváth, Ilona Sárvári
author_sort Akintunde, Moyinoluwa O.
collection PubMed
description Agricultural residues are constantly increasing with increased farming processes, and improper disposal is detrimental to the environment. Majority of these waste residues are rich in lignocellulose, which makes them suitable substrate for bacterial fermentation in the production of value-added products. In this study, bacterial cellulose (BC), a purer and better form of cellulose, was produced by two Komagataeibacter sp. isolated from rotten banana and kombucha drink using corncob (CC) and sugarcane bagasse (SCB) enzymatic hydrolyzate, under different fermentation conditions, that is, static, continuous, and intermittent agitation. The physicochemical and mechanical properties of the BC films were then investigated by Fourier Transformed Infrared Spectroscopy (FTIR), Thermogravimetry analysis, Field Emission Scanning Electron Microscopy (FE-SEM), and Dynamic mechanical analysis. Agitation gave a higher BC yield, with Komagataeibacter sp. CCUG73629 producing BC from CC with a dry weight of 1.6 g/L and 1.4 g/L under continuous and intermittent agitation, respectively, compared with that of 0.9 g/L in HS medium. While BC yield of dry weight up to 1.2 g/L was obtained from SCB by Komagataeibacter sp. CCUG73630 under continuous agitation compared to that of 0.3 g/L in HS medium. FTIR analysis showed BC bands associated with cellulose I, with high thermal stability. The FE-SEM analysis showed that BC fibers were highly ordered and densely packed. Although the BC produced by both strains showed similar physicochemical and morphological properties, the BC produced by the Komagataeibacter sp. CCUG73630 in CC under intermittent agitation had the best modulus of elasticity, 10.8 GPa and tensile strength, 70.9 MPa.
format Online
Article
Text
id pubmed-9161868
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Taylor & Francis
record_format MEDLINE/PubMed
spelling pubmed-91618682022-06-03 Bacterial Cellulose Production from agricultural Residues by two Komagataeibacter sp. Strains Akintunde, Moyinoluwa O. Adebayo-Tayo, Bukola C. Ishola, Mofoluwake M. Zamani, Akram Horváth, Ilona Sárvári Bioengineered Research Paper Agricultural residues are constantly increasing with increased farming processes, and improper disposal is detrimental to the environment. Majority of these waste residues are rich in lignocellulose, which makes them suitable substrate for bacterial fermentation in the production of value-added products. In this study, bacterial cellulose (BC), a purer and better form of cellulose, was produced by two Komagataeibacter sp. isolated from rotten banana and kombucha drink using corncob (CC) and sugarcane bagasse (SCB) enzymatic hydrolyzate, under different fermentation conditions, that is, static, continuous, and intermittent agitation. The physicochemical and mechanical properties of the BC films were then investigated by Fourier Transformed Infrared Spectroscopy (FTIR), Thermogravimetry analysis, Field Emission Scanning Electron Microscopy (FE-SEM), and Dynamic mechanical analysis. Agitation gave a higher BC yield, with Komagataeibacter sp. CCUG73629 producing BC from CC with a dry weight of 1.6 g/L and 1.4 g/L under continuous and intermittent agitation, respectively, compared with that of 0.9 g/L in HS medium. While BC yield of dry weight up to 1.2 g/L was obtained from SCB by Komagataeibacter sp. CCUG73630 under continuous agitation compared to that of 0.3 g/L in HS medium. FTIR analysis showed BC bands associated with cellulose I, with high thermal stability. The FE-SEM analysis showed that BC fibers were highly ordered and densely packed. Although the BC produced by both strains showed similar physicochemical and morphological properties, the BC produced by the Komagataeibacter sp. CCUG73630 in CC under intermittent agitation had the best modulus of elasticity, 10.8 GPa and tensile strength, 70.9 MPa. Taylor & Francis 2022-04-13 /pmc/articles/PMC9161868/ /pubmed/35416127 http://dx.doi.org/10.1080/21655979.2022.2062970 Text en © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Paper
Akintunde, Moyinoluwa O.
Adebayo-Tayo, Bukola C.
Ishola, Mofoluwake M.
Zamani, Akram
Horváth, Ilona Sárvári
Bacterial Cellulose Production from agricultural Residues by two Komagataeibacter sp. Strains
title Bacterial Cellulose Production from agricultural Residues by two Komagataeibacter sp. Strains
title_full Bacterial Cellulose Production from agricultural Residues by two Komagataeibacter sp. Strains
title_fullStr Bacterial Cellulose Production from agricultural Residues by two Komagataeibacter sp. Strains
title_full_unstemmed Bacterial Cellulose Production from agricultural Residues by two Komagataeibacter sp. Strains
title_short Bacterial Cellulose Production from agricultural Residues by two Komagataeibacter sp. Strains
title_sort bacterial cellulose production from agricultural residues by two komagataeibacter sp. strains
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9161868/
https://www.ncbi.nlm.nih.gov/pubmed/35416127
http://dx.doi.org/10.1080/21655979.2022.2062970
work_keys_str_mv AT akintundemoyinoluwao bacterialcelluloseproductionfromagriculturalresiduesbytwokomagataeibacterspstrains
AT adebayotayobukolac bacterialcelluloseproductionfromagriculturalresiduesbytwokomagataeibacterspstrains
AT isholamofoluwakem bacterialcelluloseproductionfromagriculturalresiduesbytwokomagataeibacterspstrains
AT zamaniakram bacterialcelluloseproductionfromagriculturalresiduesbytwokomagataeibacterspstrains
AT horvathilonasarvari bacterialcelluloseproductionfromagriculturalresiduesbytwokomagataeibacterspstrains