Cargando…

Molecular mechanism of the anti-gastric cancer activity of 1,2,3,6-tetra-O-galloyl-β-D-glucose isolated from Trapa bispinosa Roxb. shell in vitro

Trapa bispinosa Roxb. is a traditional Chinese food which is well known for its medicinal properties. The shell of Trapa bispinosa has anticancer activity, maybe due to its high content of polyphenols. There are few studies on the chemical composition of Trapa bispinosa shells, then we isolated the...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Limei, Yin, Dongjie, Fan, Yanhui, Min, Ting, Yi, Yang, Wang, Hongxun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9162355/
https://www.ncbi.nlm.nih.gov/pubmed/35653387
http://dx.doi.org/10.1371/journal.pone.0269013
_version_ 1784719684837310464
author Wang, Limei
Yin, Dongjie
Fan, Yanhui
Min, Ting
Yi, Yang
Wang, Hongxun
author_facet Wang, Limei
Yin, Dongjie
Fan, Yanhui
Min, Ting
Yi, Yang
Wang, Hongxun
author_sort Wang, Limei
collection PubMed
description Trapa bispinosa Roxb. is a traditional Chinese food which is well known for its medicinal properties. The shell of Trapa bispinosa has anticancer activity, maybe due to its high content of polyphenols. There are few studies on the chemical composition of Trapa bispinosa shells, then we isolated the active components from Trapa bispinosa shell and clarified the mechanism of its anticancer activity. One monomer compound was separated from the ethanol extract of the Trapa bispinosa shell by fractional extraction, silica gel, Sephadex LH-20 gel column chromatography and liquid phase separation. The structure, identified by NMR was 1,2,3,6-tetra-O-galloyl-β-D-glucose. The results of the CCK-8 assay showed that 1,2,3,6-tetra-O-galloyl-β-D-glucose could significantly inhibit the proliferation of gastric cancer SGC7901 cells, and the effect was close to that of 5-fluorouracil. Here, 1,2,3,6-tetra-O-galloyl-β-D-glucose could affect the cell cycle of SGC7901 cells. At the dose of 200 μg/mL and an incubation time of 48 h, SGC7901 cells remained in the G1 phase, apoptosis occurred, the intracellular calcium ion concentration increased and the mitochondrial membrane potential decreased. Transcriptome sequencing analysis showed that the differentially expressed genes were mainly enriched in the P53 signalling pathway associated with apoptosis. The results of qPCR and Western blot showed that 1,2,3,6-tetra-O-galloyl-β-D-glucose could induce apoptosis of SGC7901 cells by up-regulating the expression levels of P21, PUMA, PERP and IGF-BP3 genes, down-regulating the CyclinD gene, increasing the expression levels of cytochrome C, caspase-3, caspase-9 protein and decreasing that of the protein BCL-2.
format Online
Article
Text
id pubmed-9162355
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-91623552022-06-03 Molecular mechanism of the anti-gastric cancer activity of 1,2,3,6-tetra-O-galloyl-β-D-glucose isolated from Trapa bispinosa Roxb. shell in vitro Wang, Limei Yin, Dongjie Fan, Yanhui Min, Ting Yi, Yang Wang, Hongxun PLoS One Research Article Trapa bispinosa Roxb. is a traditional Chinese food which is well known for its medicinal properties. The shell of Trapa bispinosa has anticancer activity, maybe due to its high content of polyphenols. There are few studies on the chemical composition of Trapa bispinosa shells, then we isolated the active components from Trapa bispinosa shell and clarified the mechanism of its anticancer activity. One monomer compound was separated from the ethanol extract of the Trapa bispinosa shell by fractional extraction, silica gel, Sephadex LH-20 gel column chromatography and liquid phase separation. The structure, identified by NMR was 1,2,3,6-tetra-O-galloyl-β-D-glucose. The results of the CCK-8 assay showed that 1,2,3,6-tetra-O-galloyl-β-D-glucose could significantly inhibit the proliferation of gastric cancer SGC7901 cells, and the effect was close to that of 5-fluorouracil. Here, 1,2,3,6-tetra-O-galloyl-β-D-glucose could affect the cell cycle of SGC7901 cells. At the dose of 200 μg/mL and an incubation time of 48 h, SGC7901 cells remained in the G1 phase, apoptosis occurred, the intracellular calcium ion concentration increased and the mitochondrial membrane potential decreased. Transcriptome sequencing analysis showed that the differentially expressed genes were mainly enriched in the P53 signalling pathway associated with apoptosis. The results of qPCR and Western blot showed that 1,2,3,6-tetra-O-galloyl-β-D-glucose could induce apoptosis of SGC7901 cells by up-regulating the expression levels of P21, PUMA, PERP and IGF-BP3 genes, down-regulating the CyclinD gene, increasing the expression levels of cytochrome C, caspase-3, caspase-9 protein and decreasing that of the protein BCL-2. Public Library of Science 2022-06-02 /pmc/articles/PMC9162355/ /pubmed/35653387 http://dx.doi.org/10.1371/journal.pone.0269013 Text en © 2022 Wang et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Wang, Limei
Yin, Dongjie
Fan, Yanhui
Min, Ting
Yi, Yang
Wang, Hongxun
Molecular mechanism of the anti-gastric cancer activity of 1,2,3,6-tetra-O-galloyl-β-D-glucose isolated from Trapa bispinosa Roxb. shell in vitro
title Molecular mechanism of the anti-gastric cancer activity of 1,2,3,6-tetra-O-galloyl-β-D-glucose isolated from Trapa bispinosa Roxb. shell in vitro
title_full Molecular mechanism of the anti-gastric cancer activity of 1,2,3,6-tetra-O-galloyl-β-D-glucose isolated from Trapa bispinosa Roxb. shell in vitro
title_fullStr Molecular mechanism of the anti-gastric cancer activity of 1,2,3,6-tetra-O-galloyl-β-D-glucose isolated from Trapa bispinosa Roxb. shell in vitro
title_full_unstemmed Molecular mechanism of the anti-gastric cancer activity of 1,2,3,6-tetra-O-galloyl-β-D-glucose isolated from Trapa bispinosa Roxb. shell in vitro
title_short Molecular mechanism of the anti-gastric cancer activity of 1,2,3,6-tetra-O-galloyl-β-D-glucose isolated from Trapa bispinosa Roxb. shell in vitro
title_sort molecular mechanism of the anti-gastric cancer activity of 1,2,3,6-tetra-o-galloyl-β-d-glucose isolated from trapa bispinosa roxb. shell in vitro
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9162355/
https://www.ncbi.nlm.nih.gov/pubmed/35653387
http://dx.doi.org/10.1371/journal.pone.0269013
work_keys_str_mv AT wanglimei molecularmechanismoftheantigastriccanceractivityof1236tetraogalloylbdglucoseisolatedfromtrapabispinosaroxbshellinvitro
AT yindongjie molecularmechanismoftheantigastriccanceractivityof1236tetraogalloylbdglucoseisolatedfromtrapabispinosaroxbshellinvitro
AT fanyanhui molecularmechanismoftheantigastriccanceractivityof1236tetraogalloylbdglucoseisolatedfromtrapabispinosaroxbshellinvitro
AT minting molecularmechanismoftheantigastriccanceractivityof1236tetraogalloylbdglucoseisolatedfromtrapabispinosaroxbshellinvitro
AT yiyang molecularmechanismoftheantigastriccanceractivityof1236tetraogalloylbdglucoseisolatedfromtrapabispinosaroxbshellinvitro
AT wanghongxun molecularmechanismoftheantigastriccanceractivityof1236tetraogalloylbdglucoseisolatedfromtrapabispinosaroxbshellinvitro