Cargando…

EASY‐APP: An artificial intelligence model and application for early and easy prediction of severity in acute pancreatitis

BACKGROUND: Acute pancreatitis (AP) is a potentially severe or even fatal inflammation of the pancreas. Early identification of patients at high risk for developing a severe course of the disease is crucial for preventing organ failure and death. Most of the former predictive scores require many par...

Descripción completa

Detalles Bibliográficos
Autores principales: Kui, Balázs, Pintér, József, Molontay, Roland, Nagy, Marcell, Farkas, Nelli, Gede, Noémi, Vincze, Áron, Bajor, Judit, Gódi, Szilárd, Czimmer, József, Szabó, Imre, Illés, Anita, Sarlós, Patrícia, Hágendorn, Roland, Pár, Gabriella, Papp, Mária, Vitális, Zsuzsanna, Kovács, György, Fehér, Eszter, Földi, Ildikó, Izbéki, Ferenc, Gajdán, László, Fejes, Roland, Németh, Balázs Csaba, Török, Imola, Farkas, Hunor, Mickevicius, Artautas, Sallinen, Ville, Galeev, Shamil, Ramírez‐Maldonado, Elena, Párniczky, Andrea, Erőss, Bálint, Hegyi, Péter Jenő, Márta, Katalin, Váncsa, Szilárd, Sutton, Robert, Szatmary, Peter, Latawiec, Diane, Halloran, Chris, de‐Madaria, Enrique, Pando, Elizabeth, Alberti, Piero, Gómez‐Jurado, Maria José, Tantau, Alina, Szentesi, Andrea, Hegyi, Péter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9162438/
https://www.ncbi.nlm.nih.gov/pubmed/35653504
http://dx.doi.org/10.1002/ctm2.842
_version_ 1784719703936073728
author Kui, Balázs
Pintér, József
Molontay, Roland
Nagy, Marcell
Farkas, Nelli
Gede, Noémi
Vincze, Áron
Bajor, Judit
Gódi, Szilárd
Czimmer, József
Szabó, Imre
Illés, Anita
Sarlós, Patrícia
Hágendorn, Roland
Pár, Gabriella
Papp, Mária
Vitális, Zsuzsanna
Kovács, György
Fehér, Eszter
Földi, Ildikó
Izbéki, Ferenc
Gajdán, László
Fejes, Roland
Németh, Balázs Csaba
Török, Imola
Farkas, Hunor
Mickevicius, Artautas
Sallinen, Ville
Galeev, Shamil
Ramírez‐Maldonado, Elena
Párniczky, Andrea
Erőss, Bálint
Hegyi, Péter Jenő
Márta, Katalin
Váncsa, Szilárd
Sutton, Robert
Szatmary, Peter
Latawiec, Diane
Halloran, Chris
de‐Madaria, Enrique
Pando, Elizabeth
Alberti, Piero
Gómez‐Jurado, Maria José
Tantau, Alina
Szentesi, Andrea
Hegyi, Péter
author_facet Kui, Balázs
Pintér, József
Molontay, Roland
Nagy, Marcell
Farkas, Nelli
Gede, Noémi
Vincze, Áron
Bajor, Judit
Gódi, Szilárd
Czimmer, József
Szabó, Imre
Illés, Anita
Sarlós, Patrícia
Hágendorn, Roland
Pár, Gabriella
Papp, Mária
Vitális, Zsuzsanna
Kovács, György
Fehér, Eszter
Földi, Ildikó
Izbéki, Ferenc
Gajdán, László
Fejes, Roland
Németh, Balázs Csaba
Török, Imola
Farkas, Hunor
Mickevicius, Artautas
Sallinen, Ville
Galeev, Shamil
Ramírez‐Maldonado, Elena
Párniczky, Andrea
Erőss, Bálint
Hegyi, Péter Jenő
Márta, Katalin
Váncsa, Szilárd
Sutton, Robert
Szatmary, Peter
Latawiec, Diane
Halloran, Chris
de‐Madaria, Enrique
Pando, Elizabeth
Alberti, Piero
Gómez‐Jurado, Maria José
Tantau, Alina
Szentesi, Andrea
Hegyi, Péter
author_sort Kui, Balázs
collection PubMed
description BACKGROUND: Acute pancreatitis (AP) is a potentially severe or even fatal inflammation of the pancreas. Early identification of patients at high risk for developing a severe course of the disease is crucial for preventing organ failure and death. Most of the former predictive scores require many parameters or at least 24 h to predict the severity; therefore, the early therapeutic window is often missed. METHODS: The early achievable severity index (EASY) is a multicentre, multinational, prospective and observational study (ISRCTN10525246). The predictions were made using machine learning models. We used the scikit‐learn, xgboost and catboost Python packages for modelling. We evaluated our models using fourfold cross‐validation, and the receiver operating characteristic (ROC) curve, the area under the ROC curve (AUC), and accuracy metrics were calculated on the union of the test sets of the cross‐validation. The most critical factors and their contribution to the prediction were identified using a modern tool of explainable artificial intelligence called SHapley Additive exPlanations (SHAP). RESULTS: The prediction model was based on an international cohort of 1184 patients and a validation cohort of 3543 patients. The best performing model was an XGBoost classifier with an average AUC score of 0.81 ± 0.033 and an accuracy of 89.1%, and the model improved with experience. The six most influential features were the respiratory rate, body temperature, abdominal muscular reflex, gender, age and glucose level. Using the XGBoost machine learning algorithm for prediction, the SHAP values for the explanation and the bootstrapping method to estimate confidence, we developed a free and easy‐to‐use web application in the Streamlit Python‐based framework (http://easy‐app.org/). CONCLUSIONS: The EASY prediction score is a practical tool for identifying patients at high risk for severe AP within hours of hospital admission. The web application is available for clinicians and contributes to the improvement of the model.
format Online
Article
Text
id pubmed-9162438
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-91624382022-06-04 EASY‐APP: An artificial intelligence model and application for early and easy prediction of severity in acute pancreatitis Kui, Balázs Pintér, József Molontay, Roland Nagy, Marcell Farkas, Nelli Gede, Noémi Vincze, Áron Bajor, Judit Gódi, Szilárd Czimmer, József Szabó, Imre Illés, Anita Sarlós, Patrícia Hágendorn, Roland Pár, Gabriella Papp, Mária Vitális, Zsuzsanna Kovács, György Fehér, Eszter Földi, Ildikó Izbéki, Ferenc Gajdán, László Fejes, Roland Németh, Balázs Csaba Török, Imola Farkas, Hunor Mickevicius, Artautas Sallinen, Ville Galeev, Shamil Ramírez‐Maldonado, Elena Párniczky, Andrea Erőss, Bálint Hegyi, Péter Jenő Márta, Katalin Váncsa, Szilárd Sutton, Robert Szatmary, Peter Latawiec, Diane Halloran, Chris de‐Madaria, Enrique Pando, Elizabeth Alberti, Piero Gómez‐Jurado, Maria José Tantau, Alina Szentesi, Andrea Hegyi, Péter Clin Transl Med Research Articles BACKGROUND: Acute pancreatitis (AP) is a potentially severe or even fatal inflammation of the pancreas. Early identification of patients at high risk for developing a severe course of the disease is crucial for preventing organ failure and death. Most of the former predictive scores require many parameters or at least 24 h to predict the severity; therefore, the early therapeutic window is often missed. METHODS: The early achievable severity index (EASY) is a multicentre, multinational, prospective and observational study (ISRCTN10525246). The predictions were made using machine learning models. We used the scikit‐learn, xgboost and catboost Python packages for modelling. We evaluated our models using fourfold cross‐validation, and the receiver operating characteristic (ROC) curve, the area under the ROC curve (AUC), and accuracy metrics were calculated on the union of the test sets of the cross‐validation. The most critical factors and their contribution to the prediction were identified using a modern tool of explainable artificial intelligence called SHapley Additive exPlanations (SHAP). RESULTS: The prediction model was based on an international cohort of 1184 patients and a validation cohort of 3543 patients. The best performing model was an XGBoost classifier with an average AUC score of 0.81 ± 0.033 and an accuracy of 89.1%, and the model improved with experience. The six most influential features were the respiratory rate, body temperature, abdominal muscular reflex, gender, age and glucose level. Using the XGBoost machine learning algorithm for prediction, the SHAP values for the explanation and the bootstrapping method to estimate confidence, we developed a free and easy‐to‐use web application in the Streamlit Python‐based framework (http://easy‐app.org/). CONCLUSIONS: The EASY prediction score is a practical tool for identifying patients at high risk for severe AP within hours of hospital admission. The web application is available for clinicians and contributes to the improvement of the model. John Wiley and Sons Inc. 2022-06-02 /pmc/articles/PMC9162438/ /pubmed/35653504 http://dx.doi.org/10.1002/ctm2.842 Text en © 2022 The Authors. Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Kui, Balázs
Pintér, József
Molontay, Roland
Nagy, Marcell
Farkas, Nelli
Gede, Noémi
Vincze, Áron
Bajor, Judit
Gódi, Szilárd
Czimmer, József
Szabó, Imre
Illés, Anita
Sarlós, Patrícia
Hágendorn, Roland
Pár, Gabriella
Papp, Mária
Vitális, Zsuzsanna
Kovács, György
Fehér, Eszter
Földi, Ildikó
Izbéki, Ferenc
Gajdán, László
Fejes, Roland
Németh, Balázs Csaba
Török, Imola
Farkas, Hunor
Mickevicius, Artautas
Sallinen, Ville
Galeev, Shamil
Ramírez‐Maldonado, Elena
Párniczky, Andrea
Erőss, Bálint
Hegyi, Péter Jenő
Márta, Katalin
Váncsa, Szilárd
Sutton, Robert
Szatmary, Peter
Latawiec, Diane
Halloran, Chris
de‐Madaria, Enrique
Pando, Elizabeth
Alberti, Piero
Gómez‐Jurado, Maria José
Tantau, Alina
Szentesi, Andrea
Hegyi, Péter
EASY‐APP: An artificial intelligence model and application for early and easy prediction of severity in acute pancreatitis
title EASY‐APP: An artificial intelligence model and application for early and easy prediction of severity in acute pancreatitis
title_full EASY‐APP: An artificial intelligence model and application for early and easy prediction of severity in acute pancreatitis
title_fullStr EASY‐APP: An artificial intelligence model and application for early and easy prediction of severity in acute pancreatitis
title_full_unstemmed EASY‐APP: An artificial intelligence model and application for early and easy prediction of severity in acute pancreatitis
title_short EASY‐APP: An artificial intelligence model and application for early and easy prediction of severity in acute pancreatitis
title_sort easy‐app: an artificial intelligence model and application for early and easy prediction of severity in acute pancreatitis
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9162438/
https://www.ncbi.nlm.nih.gov/pubmed/35653504
http://dx.doi.org/10.1002/ctm2.842
work_keys_str_mv AT kuibalazs easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT pinterjozsef easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT molontayroland easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT nagymarcell easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT farkasnelli easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT gedenoemi easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT vinczearon easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT bajorjudit easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT godiszilard easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT czimmerjozsef easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT szaboimre easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT illesanita easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT sarlospatricia easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT hagendornroland easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT pargabriella easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT pappmaria easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT vitaliszsuzsanna easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT kovacsgyorgy easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT fehereszter easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT foldiildiko easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT izbekiferenc easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT gajdanlaszlo easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT fejesroland easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT nemethbalazscsaba easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT torokimola easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT farkashunor easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT mickeviciusartautas easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT sallinenville easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT galeevshamil easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT ramirezmaldonadoelena easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT parniczkyandrea easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT erossbalint easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT hegyipeterjeno easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT martakatalin easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT vancsaszilard easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT suttonrobert easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT szatmarypeter easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT latawiecdiane easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT halloranchris easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT demadariaenrique easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT pandoelizabeth easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT albertipiero easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT gomezjuradomariajose easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT tantaualina easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT szentesiandrea easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT hegyipeter easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis
AT easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis