Cargando…
EASY‐APP: An artificial intelligence model and application for early and easy prediction of severity in acute pancreatitis
BACKGROUND: Acute pancreatitis (AP) is a potentially severe or even fatal inflammation of the pancreas. Early identification of patients at high risk for developing a severe course of the disease is crucial for preventing organ failure and death. Most of the former predictive scores require many par...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9162438/ https://www.ncbi.nlm.nih.gov/pubmed/35653504 http://dx.doi.org/10.1002/ctm2.842 |
_version_ | 1784719703936073728 |
---|---|
author | Kui, Balázs Pintér, József Molontay, Roland Nagy, Marcell Farkas, Nelli Gede, Noémi Vincze, Áron Bajor, Judit Gódi, Szilárd Czimmer, József Szabó, Imre Illés, Anita Sarlós, Patrícia Hágendorn, Roland Pár, Gabriella Papp, Mária Vitális, Zsuzsanna Kovács, György Fehér, Eszter Földi, Ildikó Izbéki, Ferenc Gajdán, László Fejes, Roland Németh, Balázs Csaba Török, Imola Farkas, Hunor Mickevicius, Artautas Sallinen, Ville Galeev, Shamil Ramírez‐Maldonado, Elena Párniczky, Andrea Erőss, Bálint Hegyi, Péter Jenő Márta, Katalin Váncsa, Szilárd Sutton, Robert Szatmary, Peter Latawiec, Diane Halloran, Chris de‐Madaria, Enrique Pando, Elizabeth Alberti, Piero Gómez‐Jurado, Maria José Tantau, Alina Szentesi, Andrea Hegyi, Péter |
author_facet | Kui, Balázs Pintér, József Molontay, Roland Nagy, Marcell Farkas, Nelli Gede, Noémi Vincze, Áron Bajor, Judit Gódi, Szilárd Czimmer, József Szabó, Imre Illés, Anita Sarlós, Patrícia Hágendorn, Roland Pár, Gabriella Papp, Mária Vitális, Zsuzsanna Kovács, György Fehér, Eszter Földi, Ildikó Izbéki, Ferenc Gajdán, László Fejes, Roland Németh, Balázs Csaba Török, Imola Farkas, Hunor Mickevicius, Artautas Sallinen, Ville Galeev, Shamil Ramírez‐Maldonado, Elena Párniczky, Andrea Erőss, Bálint Hegyi, Péter Jenő Márta, Katalin Váncsa, Szilárd Sutton, Robert Szatmary, Peter Latawiec, Diane Halloran, Chris de‐Madaria, Enrique Pando, Elizabeth Alberti, Piero Gómez‐Jurado, Maria José Tantau, Alina Szentesi, Andrea Hegyi, Péter |
author_sort | Kui, Balázs |
collection | PubMed |
description | BACKGROUND: Acute pancreatitis (AP) is a potentially severe or even fatal inflammation of the pancreas. Early identification of patients at high risk for developing a severe course of the disease is crucial for preventing organ failure and death. Most of the former predictive scores require many parameters or at least 24 h to predict the severity; therefore, the early therapeutic window is often missed. METHODS: The early achievable severity index (EASY) is a multicentre, multinational, prospective and observational study (ISRCTN10525246). The predictions were made using machine learning models. We used the scikit‐learn, xgboost and catboost Python packages for modelling. We evaluated our models using fourfold cross‐validation, and the receiver operating characteristic (ROC) curve, the area under the ROC curve (AUC), and accuracy metrics were calculated on the union of the test sets of the cross‐validation. The most critical factors and their contribution to the prediction were identified using a modern tool of explainable artificial intelligence called SHapley Additive exPlanations (SHAP). RESULTS: The prediction model was based on an international cohort of 1184 patients and a validation cohort of 3543 patients. The best performing model was an XGBoost classifier with an average AUC score of 0.81 ± 0.033 and an accuracy of 89.1%, and the model improved with experience. The six most influential features were the respiratory rate, body temperature, abdominal muscular reflex, gender, age and glucose level. Using the XGBoost machine learning algorithm for prediction, the SHAP values for the explanation and the bootstrapping method to estimate confidence, we developed a free and easy‐to‐use web application in the Streamlit Python‐based framework (http://easy‐app.org/). CONCLUSIONS: The EASY prediction score is a practical tool for identifying patients at high risk for severe AP within hours of hospital admission. The web application is available for clinicians and contributes to the improvement of the model. |
format | Online Article Text |
id | pubmed-9162438 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-91624382022-06-04 EASY‐APP: An artificial intelligence model and application for early and easy prediction of severity in acute pancreatitis Kui, Balázs Pintér, József Molontay, Roland Nagy, Marcell Farkas, Nelli Gede, Noémi Vincze, Áron Bajor, Judit Gódi, Szilárd Czimmer, József Szabó, Imre Illés, Anita Sarlós, Patrícia Hágendorn, Roland Pár, Gabriella Papp, Mária Vitális, Zsuzsanna Kovács, György Fehér, Eszter Földi, Ildikó Izbéki, Ferenc Gajdán, László Fejes, Roland Németh, Balázs Csaba Török, Imola Farkas, Hunor Mickevicius, Artautas Sallinen, Ville Galeev, Shamil Ramírez‐Maldonado, Elena Párniczky, Andrea Erőss, Bálint Hegyi, Péter Jenő Márta, Katalin Váncsa, Szilárd Sutton, Robert Szatmary, Peter Latawiec, Diane Halloran, Chris de‐Madaria, Enrique Pando, Elizabeth Alberti, Piero Gómez‐Jurado, Maria José Tantau, Alina Szentesi, Andrea Hegyi, Péter Clin Transl Med Research Articles BACKGROUND: Acute pancreatitis (AP) is a potentially severe or even fatal inflammation of the pancreas. Early identification of patients at high risk for developing a severe course of the disease is crucial for preventing organ failure and death. Most of the former predictive scores require many parameters or at least 24 h to predict the severity; therefore, the early therapeutic window is often missed. METHODS: The early achievable severity index (EASY) is a multicentre, multinational, prospective and observational study (ISRCTN10525246). The predictions were made using machine learning models. We used the scikit‐learn, xgboost and catboost Python packages for modelling. We evaluated our models using fourfold cross‐validation, and the receiver operating characteristic (ROC) curve, the area under the ROC curve (AUC), and accuracy metrics were calculated on the union of the test sets of the cross‐validation. The most critical factors and their contribution to the prediction were identified using a modern tool of explainable artificial intelligence called SHapley Additive exPlanations (SHAP). RESULTS: The prediction model was based on an international cohort of 1184 patients and a validation cohort of 3543 patients. The best performing model was an XGBoost classifier with an average AUC score of 0.81 ± 0.033 and an accuracy of 89.1%, and the model improved with experience. The six most influential features were the respiratory rate, body temperature, abdominal muscular reflex, gender, age and glucose level. Using the XGBoost machine learning algorithm for prediction, the SHAP values for the explanation and the bootstrapping method to estimate confidence, we developed a free and easy‐to‐use web application in the Streamlit Python‐based framework (http://easy‐app.org/). CONCLUSIONS: The EASY prediction score is a practical tool for identifying patients at high risk for severe AP within hours of hospital admission. The web application is available for clinicians and contributes to the improvement of the model. John Wiley and Sons Inc. 2022-06-02 /pmc/articles/PMC9162438/ /pubmed/35653504 http://dx.doi.org/10.1002/ctm2.842 Text en © 2022 The Authors. Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Kui, Balázs Pintér, József Molontay, Roland Nagy, Marcell Farkas, Nelli Gede, Noémi Vincze, Áron Bajor, Judit Gódi, Szilárd Czimmer, József Szabó, Imre Illés, Anita Sarlós, Patrícia Hágendorn, Roland Pár, Gabriella Papp, Mária Vitális, Zsuzsanna Kovács, György Fehér, Eszter Földi, Ildikó Izbéki, Ferenc Gajdán, László Fejes, Roland Németh, Balázs Csaba Török, Imola Farkas, Hunor Mickevicius, Artautas Sallinen, Ville Galeev, Shamil Ramírez‐Maldonado, Elena Párniczky, Andrea Erőss, Bálint Hegyi, Péter Jenő Márta, Katalin Váncsa, Szilárd Sutton, Robert Szatmary, Peter Latawiec, Diane Halloran, Chris de‐Madaria, Enrique Pando, Elizabeth Alberti, Piero Gómez‐Jurado, Maria José Tantau, Alina Szentesi, Andrea Hegyi, Péter EASY‐APP: An artificial intelligence model and application for early and easy prediction of severity in acute pancreatitis |
title | EASY‐APP: An artificial intelligence model and application for early and easy prediction of severity in acute pancreatitis |
title_full | EASY‐APP: An artificial intelligence model and application for early and easy prediction of severity in acute pancreatitis |
title_fullStr | EASY‐APP: An artificial intelligence model and application for early and easy prediction of severity in acute pancreatitis |
title_full_unstemmed | EASY‐APP: An artificial intelligence model and application for early and easy prediction of severity in acute pancreatitis |
title_short | EASY‐APP: An artificial intelligence model and application for early and easy prediction of severity in acute pancreatitis |
title_sort | easy‐app: an artificial intelligence model and application for early and easy prediction of severity in acute pancreatitis |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9162438/ https://www.ncbi.nlm.nih.gov/pubmed/35653504 http://dx.doi.org/10.1002/ctm2.842 |
work_keys_str_mv | AT kuibalazs easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT pinterjozsef easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT molontayroland easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT nagymarcell easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT farkasnelli easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT gedenoemi easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT vinczearon easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT bajorjudit easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT godiszilard easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT czimmerjozsef easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT szaboimre easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT illesanita easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT sarlospatricia easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT hagendornroland easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT pargabriella easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT pappmaria easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT vitaliszsuzsanna easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT kovacsgyorgy easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT fehereszter easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT foldiildiko easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT izbekiferenc easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT gajdanlaszlo easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT fejesroland easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT nemethbalazscsaba easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT torokimola easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT farkashunor easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT mickeviciusartautas easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT sallinenville easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT galeevshamil easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT ramirezmaldonadoelena easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT parniczkyandrea easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT erossbalint easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT hegyipeterjeno easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT martakatalin easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT vancsaszilard easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT suttonrobert easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT szatmarypeter easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT latawiecdiane easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT halloranchris easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT demadariaenrique easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT pandoelizabeth easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT albertipiero easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT gomezjuradomariajose easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT tantaualina easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT szentesiandrea easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT hegyipeter easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis AT easyappanartificialintelligencemodelandapplicationforearlyandeasypredictionofseverityinacutepancreatitis |