Cargando…
Deep Multi-Scale Residual Connected Neural Network Model for Intelligent Athlete Balance Control Ability Evaluation
Athlete balance control ability plays an important role in different types of sports. Accurate and efficient evaluations of the balance control abilities can significantly improve the athlete management performance. With the rapid development of the athlete training field, intelligent and automatic...
Autores principales: | Xu, Nannan, Wang, Xin, Xu, Yangming, Zhao, Tianyu, Li, Xiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9162817/ https://www.ncbi.nlm.nih.gov/pubmed/35665300 http://dx.doi.org/10.1155/2022/9012709 |
Ejemplares similares
-
Deep causal learning for robotic intelligence
por: Li, Yangming
Publicado: (2023) -
Postural balance ability and vertical jumping performance in female veteran volleyball athletes and non-athletes
por: Nikolaidou, Maria-Elissavet, et al.
Publicado: (2023) -
Trait and Ability Emotional Intelligence and Its Impact on Sports Performance of Athletes
por: Kopp, Alexandra, et al.
Publicado: (2021) -
Multi-classification method of arrhythmia based on multi-scale residual neural network and multi-channel data fusion
por: Zhang, Fuchun, et al.
Publicado: (2023) -
Intelligent Control Method for Loss Distribution Balance of High-Power Photovoltaic Grid-Connected Inverters
por: Xu, Yi, et al.
Publicado: (2022)