Cargando…
Mechanical life support algorithm developed by simulation for inpatient emergency management of recipients of implantable left ventricular assist devices
BACKGROUND: Published guidance concerning emergency management of left ventricular assist device (LVAD) recipients is both limited and lacking in consensus which increases the risk of delayed and/or inappropriate actions. METHODS: In our specialist tertiary referral centre we developed, by iteration...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9162943/ https://www.ncbi.nlm.nih.gov/pubmed/35669526 http://dx.doi.org/10.1016/j.resplu.2022.100254 |
Sumario: | BACKGROUND: Published guidance concerning emergency management of left ventricular assist device (LVAD) recipients is both limited and lacking in consensus which increases the risk of delayed and/or inappropriate actions. METHODS: In our specialist tertiary referral centre we developed, by iteration, a novel in-hospital resuscitation algorithm for LVAD emergencies which we validated through simulation and assessment of our multi-disciplinary team. A Mechanical Life Support course was established to provide theoretical and practical education combined with simulation to consolidate knowledge and confidence in algorithm use. We assessed these measures using confidence scoring, a key performance indicator (the time taken to restart LVAD function) and a multiple-choice question (MCQ) examination. RESULTS: The mean baseline staff confidence score in management of LVAD emergencies was 2.4 ± 1.2 out of a maximum of 5 (n = 29). After training with simulation, mean confidence score increased to 3.5 ± 0.8 (n = 13). Clinical personnel who were provided with the novel resuscitation algorithm were able to reduce time taken to restart LVAD function from a mean value of 49 ± 8.2 seconds (pre-training) to 20.4 ± 5 seconds (post-training) (n = 42, p < 0.0001). The Mechanical Life Support course increased mean confidence from 2.5 ± 1.2 to 4 ± 0.6 (n = 44, p < 0.0001) and mean MCQ score from 18.7 ± 3.4 to 22.8 ± 2.6, out of a maximum of 28 (n = 44, p < 0.0001). CONCLUSION: We present a simplified LVAD Advanced Life Support algorithm to aid the crucial first minutes of resuscitation where basic interventions are likely to be critical in assuring good patient outcomes. |
---|