Cargando…

Dual-energy CT: minimal essentials for radiologists

Dual-energy CT, the object is scanned at two different energies, makes it possible to identify the characteristics of materials that cannot be evaluated on conventional single-energy CT images. This imaging method can be used to perform material decomposition based on differences in the material-att...

Descripción completa

Detalles Bibliográficos
Autores principales: Tatsugami, Fuminari, Higaki, Toru, Nakamura, Yuko, Honda, Yukiko, Awai, Kazuo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Nature Singapore 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9162973/
https://www.ncbi.nlm.nih.gov/pubmed/34981319
http://dx.doi.org/10.1007/s11604-021-01233-2
Descripción
Sumario:Dual-energy CT, the object is scanned at two different energies, makes it possible to identify the characteristics of materials that cannot be evaluated on conventional single-energy CT images. This imaging method can be used to perform material decomposition based on differences in the material-attenuation coefficients at different energies. Dual-energy analyses can be classified as image data-based- and raw data-based analysis. The beam-hardening effect is lower with raw data-based analysis, resulting in more accurate dual-energy analysis. On virtual monochromatic images, the iodine contrast increases as the energy level decreases; this improves visualization of contrast-enhanced lesions. Also, the application of material decomposition, such as iodine- and edema images, increases the detectability of lesions due to diseases encountered in daily clinical practice. In this review, the minimal essentials of dual-energy CT scanning are presented and its usefulness in daily clinical practice is discussed.