Cargando…
Targeted genome-wide SNP genotyping in feral horses using non-invasive fecal swabs
The development of high-throughput sequencing has prompted a transition in wildlife genetics from using microsatellites toward sets of single nucleotide polymorphisms (SNPs). However, genotyping large numbers of targeted SNPs using non-invasive samples remains challenging due to relatively large DNA...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9162989/ https://www.ncbi.nlm.nih.gov/pubmed/35673611 http://dx.doi.org/10.1007/s12686-022-01259-2 |
Sumario: | The development of high-throughput sequencing has prompted a transition in wildlife genetics from using microsatellites toward sets of single nucleotide polymorphisms (SNPs). However, genotyping large numbers of targeted SNPs using non-invasive samples remains challenging due to relatively large DNA input requirements. Recently, target enrichment has emerged as a promising approach requiring little template DNA. We assessed the efficacy of Tecan Genomics’ Allegro Targeted Genotyping (ATG) for generating genome-wide SNP data in feral horses using DNA isolated from fecal swabs. Total and host-specific DNA were quantified for 989 samples collected as part of a long-term individual-based study of feral horses on Sable Island, Nova Scotia, Canada, using dsDNA fluorescence and a host-specific qPCR assay, respectively. Forty-eight samples representing 44 individuals containing at least 10 ng of host DNA (ATG’s recommended minimum input) were genotyped using a custom multiplex panel targeting 279 SNPs. Genotyping accuracy and consistency were assessed by contrasting ATG genotypes with those obtained from the same individuals with SNP microarrays, and from multiple samples from the same horse, respectively. 62% of swabs yielded the minimum recommended amount of host DNA for ATG. Ignoring samples that failed to amplify, ATG recovered an average of 88.8% targeted sites per sample, while genotype concordance between ATG and SNP microarrays was 98.5%. The repeatability of genotypes from the same individual approached unity with an average of 99.9%. This study demonstrates the suitability of ATG for genome-wide, non-invasive targeted SNP genotyping, and will facilitate further ecological and conservation genetics research in equids and related species. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12686-022-01259-2. |
---|