Cargando…
Feature selection for global tropospheric ozone prediction based on the BO-XGBoost-RFE algorithm
Ozone is one of the most important air pollutants, with significant impacts on human health, regional air quality and ecosystems. In this study, we use geographic information and environmental information of the monitoring site of 5577 regions in the world from 2010 to 2014 as feature input to predi...
Autores principales: | Zhang, Biao, Zhang, Ying, Jiang, Xuchu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9163069/ https://www.ncbi.nlm.nih.gov/pubmed/35655087 http://dx.doi.org/10.1038/s41598-022-13498-2 |
Ejemplares similares
-
Classification and prediction of spinal disease based on the SMOTE-RFE-XGBoost model
por: Zhang, Biao, et al.
Publicado: (2023) -
Forecast and analysis of aircraft passenger satisfaction based on RF-RFE-LR model
por: Jiang, Xuchu, et al.
Publicado: (2022) -
Hybrid BO-XGBoost and BO-RF Models for the Strength Prediction of Self-Compacting Mortars with Parametric Analysis
por: Ahmed, Asif, et al.
Publicado: (2023) -
Selecting Feature Subsets Based on SVM-RFE and the Overlapping Ratio with Applications in Bioinformatics
por: Lin, Xiaohui, et al.
Publicado: (2017) -
NATO Advanced Workshop on Tropospheric Ozone : Regional and Global Scale Interactions
por: Isaksen, I
Publicado: (1988)