Cargando…
Artificial neural networks enable genome-scale simulations of intracellular signaling
Mammalian cells adapt their functional state in response to external signals in form of ligands that bind receptors on the cell-surface. Mechanistically, this involves signal-processing through a complex network of molecular interactions that govern transcription factor activity patterns. Computer s...
Autores principales: | Nilsson, Avlant, Peters, Joshua M., Meimetis, Nikolaos, Bryson, Bryan, Lauffenburger, Douglas A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9163072/ https://www.ncbi.nlm.nih.gov/pubmed/35654811 http://dx.doi.org/10.1038/s41467-022-30684-y |
Ejemplares similares
-
Artificial neural networks enabled by nanophotonics
por: Zhang, Qiming, et al.
Publicado: (2019) -
Predicting growth of the healthy infant using a genome scale metabolic model
por: Nilsson, Avlant, et al.
Publicado: (2017) -
Querying quantitative logic models (Q2LM) to study intracellular signaling networks and cell-cytokine interactions
por: Morris, Melody K, et al.
Publicado: (2012) -
Enabling Large-Scale Simulations With the GENESIS Neuronal Simulator
por: Crone, Joshua C., et al.
Publicado: (2019) -
Artificial Neural Networks for IoT-Enabled Smart Applications: Recent Trends
por: Velichko, Andrei, et al.
Publicado: (2023)