Cargando…

Optical manipulation of Rashba-split 2-dimensional electron gas

In spintronics, the two main approaches to actively control the electrons’ spin involve static magnetic or electric fields. An alternative avenue relies on the use of optical fields to generate spin currents, which can bolster spin-device performance, allowing for faster and more efficient logic. To...

Descripción completa

Detalles Bibliográficos
Autores principales: Michiardi, M., Boschini, F., Kung, H.-H., Na, M. X., Dufresne, S. K. Y., Currie, A., Levy, G., Zhdanovich, S., Mills, A. K., Jones, D. J., Mi, J. L., Iversen, B. B., Hofmann, Ph., Damascelli, A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9163084/
https://www.ncbi.nlm.nih.gov/pubmed/35654938
http://dx.doi.org/10.1038/s41467-022-30742-5
_version_ 1784719853228130304
author Michiardi, M.
Boschini, F.
Kung, H.-H.
Na, M. X.
Dufresne, S. K. Y.
Currie, A.
Levy, G.
Zhdanovich, S.
Mills, A. K.
Jones, D. J.
Mi, J. L.
Iversen, B. B.
Hofmann, Ph.
Damascelli, A.
author_facet Michiardi, M.
Boschini, F.
Kung, H.-H.
Na, M. X.
Dufresne, S. K. Y.
Currie, A.
Levy, G.
Zhdanovich, S.
Mills, A. K.
Jones, D. J.
Mi, J. L.
Iversen, B. B.
Hofmann, Ph.
Damascelli, A.
author_sort Michiardi, M.
collection PubMed
description In spintronics, the two main approaches to actively control the electrons’ spin involve static magnetic or electric fields. An alternative avenue relies on the use of optical fields to generate spin currents, which can bolster spin-device performance, allowing for faster and more efficient logic. To date, research has mainly focused on the optical injection of spin currents through the photogalvanic effect, and little is known about the direct optical control of the intrinsic spin-splitting. To explore the optical manipulation of a material’s spin properties, we consider the Rashba effect. Using time- and angle-resolved photoemission spectroscopy (TR-ARPES), we demonstrate that an optical excitation can tune the Rashba-induced spin splitting of a two-dimensional electron gas at the surface of Bi(2)Se(3). We establish that light-induced photovoltage and charge carrier redistribution - which in concert modulate the Rashba spin-orbit coupling strength on a sub-picosecond timescale - can offer an unprecedented platform for achieving optically-driven spin logic devices.
format Online
Article
Text
id pubmed-9163084
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-91630842022-06-05 Optical manipulation of Rashba-split 2-dimensional electron gas Michiardi, M. Boschini, F. Kung, H.-H. Na, M. X. Dufresne, S. K. Y. Currie, A. Levy, G. Zhdanovich, S. Mills, A. K. Jones, D. J. Mi, J. L. Iversen, B. B. Hofmann, Ph. Damascelli, A. Nat Commun Article In spintronics, the two main approaches to actively control the electrons’ spin involve static magnetic or electric fields. An alternative avenue relies on the use of optical fields to generate spin currents, which can bolster spin-device performance, allowing for faster and more efficient logic. To date, research has mainly focused on the optical injection of spin currents through the photogalvanic effect, and little is known about the direct optical control of the intrinsic spin-splitting. To explore the optical manipulation of a material’s spin properties, we consider the Rashba effect. Using time- and angle-resolved photoemission spectroscopy (TR-ARPES), we demonstrate that an optical excitation can tune the Rashba-induced spin splitting of a two-dimensional electron gas at the surface of Bi(2)Se(3). We establish that light-induced photovoltage and charge carrier redistribution - which in concert modulate the Rashba spin-orbit coupling strength on a sub-picosecond timescale - can offer an unprecedented platform for achieving optically-driven spin logic devices. Nature Publishing Group UK 2022-06-02 /pmc/articles/PMC9163084/ /pubmed/35654938 http://dx.doi.org/10.1038/s41467-022-30742-5 Text en © The Author(s) 2022, corrected publication 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Michiardi, M.
Boschini, F.
Kung, H.-H.
Na, M. X.
Dufresne, S. K. Y.
Currie, A.
Levy, G.
Zhdanovich, S.
Mills, A. K.
Jones, D. J.
Mi, J. L.
Iversen, B. B.
Hofmann, Ph.
Damascelli, A.
Optical manipulation of Rashba-split 2-dimensional electron gas
title Optical manipulation of Rashba-split 2-dimensional electron gas
title_full Optical manipulation of Rashba-split 2-dimensional electron gas
title_fullStr Optical manipulation of Rashba-split 2-dimensional electron gas
title_full_unstemmed Optical manipulation of Rashba-split 2-dimensional electron gas
title_short Optical manipulation of Rashba-split 2-dimensional electron gas
title_sort optical manipulation of rashba-split 2-dimensional electron gas
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9163084/
https://www.ncbi.nlm.nih.gov/pubmed/35654938
http://dx.doi.org/10.1038/s41467-022-30742-5
work_keys_str_mv AT michiardim opticalmanipulationofrashbasplit2dimensionalelectrongas
AT boschinif opticalmanipulationofrashbasplit2dimensionalelectrongas
AT kunghh opticalmanipulationofrashbasplit2dimensionalelectrongas
AT namx opticalmanipulationofrashbasplit2dimensionalelectrongas
AT dufresnesky opticalmanipulationofrashbasplit2dimensionalelectrongas
AT curriea opticalmanipulationofrashbasplit2dimensionalelectrongas
AT levyg opticalmanipulationofrashbasplit2dimensionalelectrongas
AT zhdanovichs opticalmanipulationofrashbasplit2dimensionalelectrongas
AT millsak opticalmanipulationofrashbasplit2dimensionalelectrongas
AT jonesdj opticalmanipulationofrashbasplit2dimensionalelectrongas
AT mijl opticalmanipulationofrashbasplit2dimensionalelectrongas
AT iversenbb opticalmanipulationofrashbasplit2dimensionalelectrongas
AT hofmannph opticalmanipulationofrashbasplit2dimensionalelectrongas
AT damascellia opticalmanipulationofrashbasplit2dimensionalelectrongas