Cargando…
The structure, function and expression analysis of the nodulin 26-like intrinsic protein subfamily of plant aquaporins in tomato
The nodulin 26-like intrinsic protein (NIP) family belonging to a group of aquaporin proteins is unique to plants. NIPs have a wide of transport activities and are involved in developmental processes and stress tolerance. The well reported Lsi1 and Lsi6 belonging to NIP III were characterized as Si...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9163140/ https://www.ncbi.nlm.nih.gov/pubmed/35655083 http://dx.doi.org/10.1038/s41598-022-13195-0 |
Sumario: | The nodulin 26-like intrinsic protein (NIP) family belonging to a group of aquaporin proteins is unique to plants. NIPs have a wide of transport activities and are involved in developmental processes and stress tolerance. The well reported Lsi1 and Lsi6 belonging to NIP III were characterized as Si transporters. However, except Lsi1 and Lsi6, most NIPs remain unknown. Here, we identified 43 putative aquaporins in tomato. We found there are 12 NIPs, including 8 NIP I proteins, 3 NIP II proteins, and 1 NIP III protein among the 43 aquaporins. Also, there are two Si efflux transporters SlLsi2-1 and SlLsi2-2 identified by using Lsi2 proteins from other species. By analysing the phylogenetic relationships, conserved residues and expression patterns, we propose that three NIP I members (SlNIP-2, SlNIP-3 and SlNIP-11) may transport water, ammonia, urea, and boric acid, and contribute to pollen development. Three NIP II proteins (SlNIP-7, SlNIP-9 and SlNIP-12) may be boric acid facilitators, and affect plant growth and anther development. Overall, the study provides valuable candidates of Si transporters and other NIP proteins to further explore their roles in uptake and transport for silicon, boron, and other substrates in tomato. |
---|