Cargando…

Adaptive replanning using cone beam CT for deformation of original CT simulation

BACKGROUND: During a course of radiation therapy, anatomical changes such as a decrease in tumour size or weight loss can trigger the need for repeating a computed tomography (CT) simulation scan in order to generate a new treatment plan. This adaptive approach requires a separate appointment for an...

Descripción completa

Detalles Bibliográficos
Autores principales: Bojechko, Casey, Hua, Patricia, Sumner, Whitney, Guram, Kripa, Atwood, Todd, Sharabi, Andrew
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9163453/
https://www.ncbi.nlm.nih.gov/pubmed/34704381
http://dx.doi.org/10.1002/jmrs.549
Descripción
Sumario:BACKGROUND: During a course of radiation therapy, anatomical changes such as a decrease in tumour size or weight loss can trigger the need for repeating a computed tomography (CT) simulation scan in order to generate a new treatment plan. This adaptive approach requires a separate appointment for an additional CT scan which generates additional burden, cost, and radiation exposure for patients. CASE PRESENTATION: Here, we present a case of a head and neck cancer patient who required palliative radiation for a large neck mass. During treatment, he had a remarkable response which required a replan due to rapid tumour downsizing. In this case, we used a novel technique to avoid repeating the planning CT simulation by using a mid‐treatment high‐quality cone beam CT (CBCT) to deform the secondary image (plan CT) of the original planning CT and generate a new adapted treatment plan. CONCLUSION: This is the first report to our knowledge using a Halcyon CBCT to deform the original planning CT in order to generate a new radiation treatment plan, and this novel technique represents a new potential method of adaptive replanning for select patients.