Cargando…
A watershed water quality prediction model based on attention mechanism and Bi-LSTM
Accurate prediction of water quality contributes to the intelligent management and control of watershed ecology. Water Quality data has time series characteristics, but the existing models only focus on the forward time series when LSTM is introduced and do not consider the effect of the reverse tim...
Autores principales: | Zhang, Qiang, Wang, Ruiqi, Qi, Ying, Wen, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9163529/ https://www.ncbi.nlm.nih.gov/pubmed/35657549 http://dx.doi.org/10.1007/s11356-022-21115-y |
Ejemplares similares
-
A Convolutional Neural Network Face Recognition Method Based on BiLSTM and Attention Mechanism
por: Qi, Xiaobo, et al.
Publicado: (2023) -
Assessing effect of best management practices in unmonitored watersheds using the coupled SWAT-BiLSTM approach
por: Zhang, Xianqi, et al.
Publicado: (2023) -
Data glove-based gesture recognition using CNN-BiLSTM model with attention mechanism
por: Wu, Jiawei, et al.
Publicado: (2023) -
Prediction of air quality index based on the SSA-BiLSTM-LightGBM model
por: Zhang, Xiaowen, et al.
Publicado: (2023) -
Non-intrusive speech quality assessment with attention-based ResNet-BiLSTM
por: Shen, Kailai, et al.
Publicado: (2023)