Cargando…

A LASSO-derived clinical score to predict severe acute kidney injury in the cardiac surgery recovery unit: a large retrospective cohort study using the MIMIC database

OBJECTIVES: We aimed to develop an effective tool for predicting severe acute kidney injury (AKI) in patients admitted to the cardiac surgery recovery unit (CSRU). DESIGN: A retrospective cohort study. SETTING: Data were extracted from the Medical Information Mart for Intensive Care (MIMIC)-III data...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Tucheng, He, Wanbing, Xie, Yong, Lv, Wenyu, Li, Yuewei, Li, Hongwei, Huang, Jingjing, Huang, Jieping, Chen, Yangxin, Guo, Qi, Wang, Jingfeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9163540/
https://www.ncbi.nlm.nih.gov/pubmed/35654462
http://dx.doi.org/10.1136/bmjopen-2021-060258
Descripción
Sumario:OBJECTIVES: We aimed to develop an effective tool for predicting severe acute kidney injury (AKI) in patients admitted to the cardiac surgery recovery unit (CSRU). DESIGN: A retrospective cohort study. SETTING: Data were extracted from the Medical Information Mart for Intensive Care (MIMIC)-III database, consisting of critically ill participants between 2001 and 2012 in the USA. PARTICIPANTS: A total of 6271 patients admitted to the CSRU were enrolled from the MIMIC-III database. PRIMARY AND SECONDARY OUTCOME: Stages 2–3 AKI. RESULT: As identified by least absolute shrinkage and selection operator (LASSO) and logistic regression, risk factors for AKI included age, sex, weight, respiratory rate, systolic blood pressure, diastolic blood pressure, central venous pressure, urine output, partial pressure of oxygen, sedative use, furosemide use, atrial fibrillation, congestive heart failure and left heart catheterisation, all of which were used to establish a clinical score. The areas under the receiver operating characteristic curve of the model were 0.779 (95% CI: 0.766 to 0.793) for the primary cohort and 0.778 (95% CI: 0.757 to 0.799) for the validation cohort. The calibration curves showed good agreement between the predictions and observations. Decision curve analysis demonstrated that the model could achieve a net benefit. CONCLUSION: A clinical score built by using LASSO regression and logistic regression to screen multiple clinical risk factors was established to estimate the probability of severe AKI in CSRU patients. This may be an intuitive and practical tool for severe AKI prediction in the CSRU.