Cargando…
Prediction of GPCR activity using machine learning
GPCRs are the target for one-third of the FDA-approved drugs, however; the development of new drug molecules targeting GPCRs is limited by the lack of mechanistic understanding of the GPCR structure–activity-function relationship. To modulate the GPCR activity with highly specific drugs and minimal...
Autores principales: | Yadav, Prakarsh, Mollaei, Parisa, Cao, Zhonglin, Wang, Yuyang, Barati Farimani, Amir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9163700/ https://www.ncbi.nlm.nih.gov/pubmed/35685352 http://dx.doi.org/10.1016/j.csbj.2022.05.016 |
Ejemplares similares
-
Potential neutralizing antibodies discovered for novel corona virus using machine learning
por: Magar, Rishikesh, et al.
Publicado: (2021) -
Activity Map and
Transition Pathways of G Protein-Coupled
Receptor Revealed by Machine Learning
por: Mollaei, Parisa, et al.
Publicado: (2023) -
Unveiling Switching
Function of Amino Acids in
Proteins Using a Machine
Learning Approach
por: Mollaei, Parisa, et al.
Publicado: (2023) -
MOFormer: Self-Supervised
Transformer Model for Metal–Organic
Framework Property Prediction
por: Cao, Zhonglin, et al.
Publicado: (2023) -
PeptideBERT:
A Language Model Based on Transformers
for Peptide Property Prediction
por: Guntuboina, Chakradhar, et al.
Publicado: (2023)