Cargando…
Non-linear Embedding Methods for Identifying Similar Brain Activity in 1 Million iEEG Records Captured From 256 RNS System Patients
Finding electrophysiological features that are similar across patients with epilepsy may facilitate identifying treatment options for one patient that worked in patients with similar brain activity patterns. Three non-linear iEEG (intracranial electroencephalogram) embedding methods of finding simil...
Autores principales: | Arcot Desai, Sharanya, Tcheng, Thomas, Morrell, Martha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9163709/ https://www.ncbi.nlm.nih.gov/pubmed/35668816 http://dx.doi.org/10.3389/fdata.2022.840508 |
Ejemplares similares
-
Expert and deep learning model identification of iEEG seizures and seizure onset times
por: Arcot Desai, Sharanya, et al.
Publicado: (2023) -
A High Accuracy Electrographic Seizure Classifier Trained Using Semi-Supervised Labeling Applied to a Large Spectrogram Dataset
por: Barry, Wade, et al.
Publicado: (2021) -
A Primer on Hyperdimensional Computing for iEEG Seizure Detection
por: Schindler, Kaspar A., et al.
Publicado: (2021) -
Online Prediction of Lead Seizures from iEEG Data
por: Chen, Hsiang-Han, et al.
Publicado: (2021) -
An iEEG Recording and Adjustable Shunt-Current Conduction Platform for Epilepsy Treatment
por: You, Changhua, et al.
Publicado: (2022)