Cargando…
Development of a Machine Learning Algorithm for Prediction of Complications and Unplanned Readmission Following Primary Anatomic Total Shoulder Replacements
BACKGROUND: The demand and incidence of anatomic total shoulder arthroplasty (aTSA) procedures is projected to increase substantially over the next decade. There is a paucity of accurate risk prediction models which would be of great utility in minimizing morbidity and costs associated with major po...
Autores principales: | Devana, Sai K, Shah, Akash A, Lee, Changhee, Jensen, Andrew R, Cheung, Edward, van der Schaar, Mihaela, SooHoo, Nelson F |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9163721/ https://www.ncbi.nlm.nih.gov/pubmed/35669619 http://dx.doi.org/10.1177/24715492221075444 |
Ejemplares similares
-
Development of a Machine Learning Algorithm for Prediction of Complications and Unplanned Readmission Following Reverse Total Shoulder Arthroplasty
por: Devana, Sai K., et al.
Publicado: (2021) -
A Novel, Potentially Universal Machine Learning Algorithm to Predict Complications in Total Knee Arthroplasty
por: Devana, Sai K., et al.
Publicado: (2021) -
Development of a Machine Learning Algorithm for Prediction of Complications after Ankle Arthrodesis
por: Bugarin, Amador, et al.
Publicado: (2022) -
Risk Factors for Mortality and Readmission After Shoulder Hemiarthroplasty for Fracture
por: Singh, Anshuman, et al.
Publicado: (2019) -
Anatomic Total Shoulder Arthroplasty with All-Polyethylene Glenoid Component for Primary Osteoarthritis with Glenoid Deficiencies
por: Matsen, Frederick A., et al.
Publicado: (2020)