Cargando…
Knee Bone and Cartilage Segmentation Based on a 3D Deep Neural Network Using Adversarial Loss for Prior Shape Constraint
Fast and accurate segmentation of knee bone and cartilage on MRI images is becoming increasingly important in the orthopaedic area, as the segmentation is an essential prerequisite step to a patient-specific diagnosis, optimising implant design and preoperative and intraoperative planning. However,...
Autores principales: | Chen, Hao, Zhao, Na, Tan, Tao, Kang, Yan, Sun, Chuanqi, Xie, Guoxi, Verdonschot, Nico, Sprengers, André |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9163741/ https://www.ncbi.nlm.nih.gov/pubmed/35669917 http://dx.doi.org/10.3389/fmed.2022.792900 |
Ejemplares similares
-
Automated segmentation of trabecular and cortical bone from proton density weighted MRI of the knee
por: Chen, Hao, et al.
Publicado: (2018) -
Sinogram Inpainting with Generative Adversarial Networks and Shape Priors
por: Valat, Emilien, et al.
Publicado: (2023) -
Dual adversarial models with cross-coordination consistency constraint for domain adaption in brain tumor segmentation
por: Qin, Chuanbo, et al.
Publicado: (2023) -
Cell segmentation and representation with shape priors
por: Hirling, Dominik, et al.
Publicado: (2022) -
Sensing prior constraints in deep neural networks for solving exploration geophysical problems
por: Wu, Xinming, et al.
Publicado: (2023)