Cargando…
Application of a Machine Learning Algorithm in Generating an Evapotranspiration Data Product From Coupled Thermal Infrared and Microwave Satellite Observations
Land surface evapotranspiration (ET) is one of the main energy sources for atmospheric dynamics and a critical component of the local, regional, and global water cycles. Consequently, accurate measurement or estimation of ET is one of the most active topics in hydro-climatology research. With massiv...
Autores principales: | Fang, Li, Zhan, Xiwu, Kalluri, Satya, Yu, Peng, Hain, Chris, Anderson, Martha, Laszlo, Istvan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9163788/ https://www.ncbi.nlm.nih.gov/pubmed/35668815 http://dx.doi.org/10.3389/fdata.2022.768676 |
Ejemplares similares
-
Deep learning estimation of northern hemisphere soil freeze-thaw dynamics using satellite multi-frequency microwave brightness temperature observations
por: Donahue, Kellen, et al.
Publicado: (2023) -
DeepEmSat: Deep Emulation for Satellite Data Mining
por: Duffy, Kate, et al.
Publicado: (2019) -
Editorial: Critical data and algorithm studies
por: Mayer, Katja, et al.
Publicado: (2023) -
Teeport: Break the Wall Between the Optimization Algorithms and Problems
por: Zhang, Zhe, et al.
Publicado: (2021) -
A proposed scenario to improve the Ncut algorithm in segmentation
por: Tran, Nhu Y., et al.
Publicado: (2023)