Cargando…
DeepMHADTA: Prediction of Drug-Target Binding Affinity Using Multi-Head Self-Attention and Convolutional Neural Network
Drug-target interactions provide insight into the drug-side effects and drug repositioning. However, wet-lab biochemical experiments are time-consuming and labor-intensive, and are insufficient to meet the pressing demand for drug research and development. With the rapid advancement of deep learning...
Autores principales: | Deng, Lei, Zeng, Yunyun, Liu, Hui, Liu, Zixuan, Liu, Xuejun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9164023/ https://www.ncbi.nlm.nih.gov/pubmed/35678684 http://dx.doi.org/10.3390/cimb44050155 |
Ejemplares similares
-
DeepCAC: a deep learning approach on DNA transcription factors classification based on multi-head self-attention and concatenate convolutional neural network
por: Zhang, Jidong, et al.
Publicado: (2023) -
Binding affinity predictions with hybrid quantum-classical convolutional neural networks
por: Domingo, L., et al.
Publicado: (2023) -
DeepSeqPan, a novel deep convolutional neural network model for pan-specific class I HLA-peptide binding affinity prediction
por: Liu, Zhonghao, et al.
Publicado: (2019) -
Integration of Multi-Head Self-Attention and Convolution for Person Re-Identification
por: Zhou, Yalei, et al.
Publicado: (2022) -
Self Multi-Head Attention-based Convolutional Neural Networks for fake news detection
por: Fang, Yong, et al.
Publicado: (2019)