Cargando…
Gpr174 Knockout Alleviates DSS-Induced Colitis via Regulating the Immune Function of Dendritic Cells
BACKGROUND: Dysfunction of the immune system would disturb the intestinal homeostasis and lead to inflammatory bowel disease (IBD). Dendritic cells (DCs) help maintain intestinal homeostasis and immediately respond to pathogens or injuries once the mucosa barriers are destroyed during IBD. G protein...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9164256/ https://www.ncbi.nlm.nih.gov/pubmed/35669778 http://dx.doi.org/10.3389/fimmu.2022.841254 |
_version_ | 1784720096361447424 |
---|---|
author | Wei, Wei Mu, Sucheng Han, Yi Chen, Yao Kuang, Zhongshu Wu, Xingyue Luo, Yue Tong, Chaoyang Zhang, Yiqun Yang, Yilin Song, Zhenju |
author_facet | Wei, Wei Mu, Sucheng Han, Yi Chen, Yao Kuang, Zhongshu Wu, Xingyue Luo, Yue Tong, Chaoyang Zhang, Yiqun Yang, Yilin Song, Zhenju |
author_sort | Wei, Wei |
collection | PubMed |
description | BACKGROUND: Dysfunction of the immune system would disturb the intestinal homeostasis and lead to inflammatory bowel disease (IBD). Dendritic cells (DCs) help maintain intestinal homeostasis and immediately respond to pathogens or injuries once the mucosa barriers are destroyed during IBD. G protein-coupled receptors(GPR)174 is an essential regulator of immunity that is widely expressed in most immune cells, including DCs. However, the role of GPR174 in regulating the immune function of DC in colitis has not been investigated. METHODS: Dextran sodium sulfate (DSS) was administered to establish the mice colitis model. Data of weight, length of colon, disease activity index (DAI), and macroscopic scores were collected. The flow cytometry was used to detect the infiltrations of T cells and DCs, the mean fluorescence intensity (MFI) of CD80, CD86, CD40, and major histocompatibility complex-II (MHC-II). And T cells proliferataion was measured by carboxyfluorescein diacetate succinimidyl ester (CFSE). The expression of cytokines (tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-10 (IL-10), interferon-γ (IFN-γ), interleukin -4 (IL-4)) and GPR174 mRNA were measured by Elisa, quantitative polymerase chain reaction (qPCR), and immunofluorescence. RNA of bone-marrow-derived dendritic cells (BMDCs) was extracted for sequencing. Adoptive transfer of BMDCs was administrated intravenously. RESULTS: Gpr174(-/-) mice exposed to 3% DSS showed significant alleviation characterized by reduced loss of weight, more minor colon damage, and better DAI and macroscopic scores. The expression of pro-inflammatory cytokines (TNF-α, IL-6) decreased, while anti-inflammatory cytokine (IL-10) increased compared with WT mice. In vitro, Gpr174(-/-) BMDCs showed less maturity, with a declined expression of MHC-II, CD80, CD86 and reduced TNF-α, higher IL-10 after LPS stimulation. Gpr174(-/-) BMDCs were less capable of activating OT-II naïve CD4(+) T cells than WT BMDCs and induced more Th0 cells to differentiate into Treg while less into Th1. Furthermore, the transcriptome sequencing analysis exhibited that Gpr174 participated in TNF-α (NF-κB) signaling, leukocyte transendothelial migration, and Th1/Th2 cell differentiation pathways. Adoptive transfer of Gpr174(-/-) BMDCs to WT mice ameliorated DSS-induced colitis. CONCLUSION: Our study indicated that GPR174 was involved in the pathogenesis of IBD by regulating the maturation of the dendritic cells to maintain immune homeostasis. TNF-α (NF-κB) signaling pathway, leukocyte transendothelial migration, and Th1/Th2 cell differentiation pathways may be the target pathway. |
format | Online Article Text |
id | pubmed-9164256 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-91642562022-06-05 Gpr174 Knockout Alleviates DSS-Induced Colitis via Regulating the Immune Function of Dendritic Cells Wei, Wei Mu, Sucheng Han, Yi Chen, Yao Kuang, Zhongshu Wu, Xingyue Luo, Yue Tong, Chaoyang Zhang, Yiqun Yang, Yilin Song, Zhenju Front Immunol Immunology BACKGROUND: Dysfunction of the immune system would disturb the intestinal homeostasis and lead to inflammatory bowel disease (IBD). Dendritic cells (DCs) help maintain intestinal homeostasis and immediately respond to pathogens or injuries once the mucosa barriers are destroyed during IBD. G protein-coupled receptors(GPR)174 is an essential regulator of immunity that is widely expressed in most immune cells, including DCs. However, the role of GPR174 in regulating the immune function of DC in colitis has not been investigated. METHODS: Dextran sodium sulfate (DSS) was administered to establish the mice colitis model. Data of weight, length of colon, disease activity index (DAI), and macroscopic scores were collected. The flow cytometry was used to detect the infiltrations of T cells and DCs, the mean fluorescence intensity (MFI) of CD80, CD86, CD40, and major histocompatibility complex-II (MHC-II). And T cells proliferataion was measured by carboxyfluorescein diacetate succinimidyl ester (CFSE). The expression of cytokines (tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-10 (IL-10), interferon-γ (IFN-γ), interleukin -4 (IL-4)) and GPR174 mRNA were measured by Elisa, quantitative polymerase chain reaction (qPCR), and immunofluorescence. RNA of bone-marrow-derived dendritic cells (BMDCs) was extracted for sequencing. Adoptive transfer of BMDCs was administrated intravenously. RESULTS: Gpr174(-/-) mice exposed to 3% DSS showed significant alleviation characterized by reduced loss of weight, more minor colon damage, and better DAI and macroscopic scores. The expression of pro-inflammatory cytokines (TNF-α, IL-6) decreased, while anti-inflammatory cytokine (IL-10) increased compared with WT mice. In vitro, Gpr174(-/-) BMDCs showed less maturity, with a declined expression of MHC-II, CD80, CD86 and reduced TNF-α, higher IL-10 after LPS stimulation. Gpr174(-/-) BMDCs were less capable of activating OT-II naïve CD4(+) T cells than WT BMDCs and induced more Th0 cells to differentiate into Treg while less into Th1. Furthermore, the transcriptome sequencing analysis exhibited that Gpr174 participated in TNF-α (NF-κB) signaling, leukocyte transendothelial migration, and Th1/Th2 cell differentiation pathways. Adoptive transfer of Gpr174(-/-) BMDCs to WT mice ameliorated DSS-induced colitis. CONCLUSION: Our study indicated that GPR174 was involved in the pathogenesis of IBD by regulating the maturation of the dendritic cells to maintain immune homeostasis. TNF-α (NF-κB) signaling pathway, leukocyte transendothelial migration, and Th1/Th2 cell differentiation pathways may be the target pathway. Frontiers Media S.A. 2022-05-20 /pmc/articles/PMC9164256/ /pubmed/35669778 http://dx.doi.org/10.3389/fimmu.2022.841254 Text en Copyright © 2022 Wei, Mu, Han, Chen, Kuang, Wu, Luo, Tong, Zhang, Yang and Song https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Immunology Wei, Wei Mu, Sucheng Han, Yi Chen, Yao Kuang, Zhongshu Wu, Xingyue Luo, Yue Tong, Chaoyang Zhang, Yiqun Yang, Yilin Song, Zhenju Gpr174 Knockout Alleviates DSS-Induced Colitis via Regulating the Immune Function of Dendritic Cells |
title | Gpr174 Knockout Alleviates DSS-Induced Colitis via Regulating the Immune Function of Dendritic Cells |
title_full | Gpr174 Knockout Alleviates DSS-Induced Colitis via Regulating the Immune Function of Dendritic Cells |
title_fullStr | Gpr174 Knockout Alleviates DSS-Induced Colitis via Regulating the Immune Function of Dendritic Cells |
title_full_unstemmed | Gpr174 Knockout Alleviates DSS-Induced Colitis via Regulating the Immune Function of Dendritic Cells |
title_short | Gpr174 Knockout Alleviates DSS-Induced Colitis via Regulating the Immune Function of Dendritic Cells |
title_sort | gpr174 knockout alleviates dss-induced colitis via regulating the immune function of dendritic cells |
topic | Immunology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9164256/ https://www.ncbi.nlm.nih.gov/pubmed/35669778 http://dx.doi.org/10.3389/fimmu.2022.841254 |
work_keys_str_mv | AT weiwei gpr174knockoutalleviatesdssinducedcolitisviaregulatingtheimmunefunctionofdendriticcells AT musucheng gpr174knockoutalleviatesdssinducedcolitisviaregulatingtheimmunefunctionofdendriticcells AT hanyi gpr174knockoutalleviatesdssinducedcolitisviaregulatingtheimmunefunctionofdendriticcells AT chenyao gpr174knockoutalleviatesdssinducedcolitisviaregulatingtheimmunefunctionofdendriticcells AT kuangzhongshu gpr174knockoutalleviatesdssinducedcolitisviaregulatingtheimmunefunctionofdendriticcells AT wuxingyue gpr174knockoutalleviatesdssinducedcolitisviaregulatingtheimmunefunctionofdendriticcells AT luoyue gpr174knockoutalleviatesdssinducedcolitisviaregulatingtheimmunefunctionofdendriticcells AT tongchaoyang gpr174knockoutalleviatesdssinducedcolitisviaregulatingtheimmunefunctionofdendriticcells AT zhangyiqun gpr174knockoutalleviatesdssinducedcolitisviaregulatingtheimmunefunctionofdendriticcells AT yangyilin gpr174knockoutalleviatesdssinducedcolitisviaregulatingtheimmunefunctionofdendriticcells AT songzhenju gpr174knockoutalleviatesdssinducedcolitisviaregulatingtheimmunefunctionofdendriticcells |