Cargando…
De novo reconstruction of cell interaction landscapes from single-cell spatial transcriptome data with DeepLinc
Based on a deep generative model of variational graph autoencoder (VGAE), we develop a new method, DeepLinc (deep learning framework for Landscapes of Interacting Cells), for the de novo reconstruction of cell interaction networks from single-cell spatial transcriptomic data. DeepLinc demonstrates h...
Autores principales: | Li, Runze, Yang, Xuerui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9164488/ https://www.ncbi.nlm.nih.gov/pubmed/35659722 http://dx.doi.org/10.1186/s13059-022-02692-0 |
Ejemplares similares
-
siVAE: interpretable deep generative models for single-cell transcriptomes
por: Choi, Yongin, et al.
Publicado: (2023) -
DeepST: identifying spatial domains in spatial transcriptomics by deep learning
por: Xu, Chang, et al.
Publicado: (2022) -
Characterizing spatial gene expression heterogeneity in spatially resolved single-cell transcriptomic data with nonuniform cellular densities
por: Miller, Brendan F., et al.
Publicado: (2021) -
Discovery of molecular features underlying the morphological landscape by integrating spatial transcriptomic data with deep features of tissue images
por: Bae, Sungwoo, et al.
Publicado: (2021) -
Single-cell transcriptome landscape of ovarian cells during primordial follicle assembly in mice
por: Wang, Jun-Jie, et al.
Publicado: (2020)