Cargando…

OTHR-42. Missing data tolerant integration of proteomic datasets enables the identification and characterization of brain cancer subtypes

Investigating the proteome can add a significant layer of information to manifold existing methylation, mutation, and transcriptome data on brain tumors as proteins represent the pharmacologically addressable phenotype of a disease. Small cohorts limit the usability and validity of statistical metho...

Descripción completa

Detalles Bibliográficos
Autores principales: Voss, Hannah, Godbole, Shweta, Schlumbohm, Simon, Dottermusch, Matthias, Schuhmann, Yannis, Neumann, Philipp, Schlüter, Hartmut, Schüller, Ulrich, Peng, Bojia, Barwikowski, Philip, Krisp, Christoph, Neumann, Julia E
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9164826/
http://dx.doi.org/10.1093/neuonc/noac079.580
_version_ 1784720234968514560
author Voss, Hannah
Godbole, Shweta
Schlumbohm, Simon
Dottermusch, Matthias
Schuhmann, Yannis
Neumann, Philipp
Schlüter, Hartmut
Schüller, Ulrich
Peng, Bojia
Barwikowski, Philip
Krisp, Christoph
Neumann, Julia E
author_facet Voss, Hannah
Godbole, Shweta
Schlumbohm, Simon
Dottermusch, Matthias
Schuhmann, Yannis
Neumann, Philipp
Schlüter, Hartmut
Schüller, Ulrich
Peng, Bojia
Barwikowski, Philip
Krisp, Christoph
Neumann, Julia E
author_sort Voss, Hannah
collection PubMed
description Investigating the proteome can add a significant layer of information to manifold existing methylation, mutation, and transcriptome data on brain tumors as proteins represent the pharmacologically addressable phenotype of a disease. Small cohorts limit the usability and validity of statistical methods, and variable technical setups and high numbers of missing values make data integration from public sources challenging. Using a newly developed framework being able to reduce batch effects without the need for data reduction or missing value imputation, we show –based on in-house and publicly available datasets- successful integration of proteomic data across different tissue types, quantification platforms, and technical setups. Exemplarily, data of a Sonic hedgehog (Shh) medulloblastoma mouse model were analyzed, showing efficient data integration independent of tissue preservation strategy or batch. We further integrated batches of publicly available data of human brain tumors, confirming proposed proteomic cancer subtypes correlating with clinical features. We show that, missing value tolerant reduction of technical variances may be helpful to identify biomarkers, proteomic signatures, and altered pathways characteristic for molecular brain cancer subtypes.
format Online
Article
Text
id pubmed-9164826
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-91648262022-06-05 OTHR-42. Missing data tolerant integration of proteomic datasets enables the identification and characterization of brain cancer subtypes Voss, Hannah Godbole, Shweta Schlumbohm, Simon Dottermusch, Matthias Schuhmann, Yannis Neumann, Philipp Schlüter, Hartmut Schüller, Ulrich Peng, Bojia Barwikowski, Philip Krisp, Christoph Neumann, Julia E Neuro Oncol Others (Not Fitting Any Other Category) Investigating the proteome can add a significant layer of information to manifold existing methylation, mutation, and transcriptome data on brain tumors as proteins represent the pharmacologically addressable phenotype of a disease. Small cohorts limit the usability and validity of statistical methods, and variable technical setups and high numbers of missing values make data integration from public sources challenging. Using a newly developed framework being able to reduce batch effects without the need for data reduction or missing value imputation, we show –based on in-house and publicly available datasets- successful integration of proteomic data across different tissue types, quantification platforms, and technical setups. Exemplarily, data of a Sonic hedgehog (Shh) medulloblastoma mouse model were analyzed, showing efficient data integration independent of tissue preservation strategy or batch. We further integrated batches of publicly available data of human brain tumors, confirming proposed proteomic cancer subtypes correlating with clinical features. We show that, missing value tolerant reduction of technical variances may be helpful to identify biomarkers, proteomic signatures, and altered pathways characteristic for molecular brain cancer subtypes. Oxford University Press 2022-06-03 /pmc/articles/PMC9164826/ http://dx.doi.org/10.1093/neuonc/noac079.580 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Others (Not Fitting Any Other Category)
Voss, Hannah
Godbole, Shweta
Schlumbohm, Simon
Dottermusch, Matthias
Schuhmann, Yannis
Neumann, Philipp
Schlüter, Hartmut
Schüller, Ulrich
Peng, Bojia
Barwikowski, Philip
Krisp, Christoph
Neumann, Julia E
OTHR-42. Missing data tolerant integration of proteomic datasets enables the identification and characterization of brain cancer subtypes
title OTHR-42. Missing data tolerant integration of proteomic datasets enables the identification and characterization of brain cancer subtypes
title_full OTHR-42. Missing data tolerant integration of proteomic datasets enables the identification and characterization of brain cancer subtypes
title_fullStr OTHR-42. Missing data tolerant integration of proteomic datasets enables the identification and characterization of brain cancer subtypes
title_full_unstemmed OTHR-42. Missing data tolerant integration of proteomic datasets enables the identification and characterization of brain cancer subtypes
title_short OTHR-42. Missing data tolerant integration of proteomic datasets enables the identification and characterization of brain cancer subtypes
title_sort othr-42. missing data tolerant integration of proteomic datasets enables the identification and characterization of brain cancer subtypes
topic Others (Not Fitting Any Other Category)
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9164826/
http://dx.doi.org/10.1093/neuonc/noac079.580
work_keys_str_mv AT vosshannah othr42missingdatatolerantintegrationofproteomicdatasetsenablestheidentificationandcharacterizationofbraincancersubtypes
AT godboleshweta othr42missingdatatolerantintegrationofproteomicdatasetsenablestheidentificationandcharacterizationofbraincancersubtypes
AT schlumbohmsimon othr42missingdatatolerantintegrationofproteomicdatasetsenablestheidentificationandcharacterizationofbraincancersubtypes
AT dottermuschmatthias othr42missingdatatolerantintegrationofproteomicdatasetsenablestheidentificationandcharacterizationofbraincancersubtypes
AT schuhmannyannis othr42missingdatatolerantintegrationofproteomicdatasetsenablestheidentificationandcharacterizationofbraincancersubtypes
AT neumannphilipp othr42missingdatatolerantintegrationofproteomicdatasetsenablestheidentificationandcharacterizationofbraincancersubtypes
AT schluterhartmut othr42missingdatatolerantintegrationofproteomicdatasetsenablestheidentificationandcharacterizationofbraincancersubtypes
AT schullerulrich othr42missingdatatolerantintegrationofproteomicdatasetsenablestheidentificationandcharacterizationofbraincancersubtypes
AT pengbojia othr42missingdatatolerantintegrationofproteomicdatasetsenablestheidentificationandcharacterizationofbraincancersubtypes
AT barwikowskiphilip othr42missingdatatolerantintegrationofproteomicdatasetsenablestheidentificationandcharacterizationofbraincancersubtypes
AT krispchristoph othr42missingdatatolerantintegrationofproteomicdatasetsenablestheidentificationandcharacterizationofbraincancersubtypes
AT neumannjuliae othr42missingdatatolerantintegrationofproteomicdatasetsenablestheidentificationandcharacterizationofbraincancersubtypes