Cargando…
Searching for Sustainable Refrigerants by Bridging Molecular Modeling with Machine Learning
[Image: see text] We present here a novel integrated approach employing machine learning algorithms for predicting thermophysical properties of fluids. The approach allows obtaining molecular parameters to be used in the polar soft-statistical associating fluid theory (SAFT) equation of state using...
Autores principales: | Alkhatib, Ismail I. I., Albà, Carlos G., Darwish, Ahmad S., Llovell, Fèlix, Vega, Lourdes F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9165071/ https://www.ncbi.nlm.nih.gov/pubmed/35673400 http://dx.doi.org/10.1021/acs.iecr.2c00719 |
Ejemplares similares
-
Assessment of Low Global Warming Potential Refrigerants
for Drop-In Replacement by Connecting their Molecular Features to
Their Performance
por: Albà, Carlos G., et al.
Publicado: (2021) -
Accurate and Model-Free Control Function for a Single
Stage Transcritical Refrigerator Cycle
por: González, Johan, et al.
Publicado: (2020) -
Sustainable retail refrigeration
por: Evans, Judith A, et al.
Publicado: (2016) -
Refrigeration
por: Wagner, U
Publicado: (2004) -
Refrigerator
por: Rees, Jonathan, et al.
Publicado: (2015)