Cargando…
THER-01. Precision brain tumor therapy by AAV-mediated oncogene editing
Pediatric high-grade glioma is a heterogeneous group of highly malignant tumors of the central nervous system, with a median overall survival of less than two years after diagnosis, demanding novel treatment options. One innovative approach is gene therapy, which has so far been hampered for cancer...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9165130/ http://dx.doi.org/10.1093/neuonc/noac079.695 |
_version_ | 1784720315705720832 |
---|---|
author | von Soosten, Laura Haar, Janina Frehtman, Veronika Holderbach, Stefan zu Belzen, Julius Upmeier Jendrusch, Michael Okonechnikov, Konstantin Pfister, Stefan M Grimm, Dirk Leuchs, Barbara Jones, David Kutscher, Lena M Zuckermann, Marc |
author_facet | von Soosten, Laura Haar, Janina Frehtman, Veronika Holderbach, Stefan zu Belzen, Julius Upmeier Jendrusch, Michael Okonechnikov, Konstantin Pfister, Stefan M Grimm, Dirk Leuchs, Barbara Jones, David Kutscher, Lena M Zuckermann, Marc |
author_sort | von Soosten, Laura |
collection | PubMed |
description | Pediatric high-grade glioma is a heterogeneous group of highly malignant tumors of the central nervous system, with a median overall survival of less than two years after diagnosis, demanding novel treatment options. One innovative approach is gene therapy, which has so far been hampered for cancer treatment owing to the lack of a system targeting tumor cells specifically. To overcome this limitation, we established a novel strategy for gene therapy, combining tumor cell-specific adeno-associated virus (AAV) variants with oncogene-specific CRISPR-Cas nucleases. We screened 177 different Cas9/gRNA combinations targeting the genes encoding H3(K27M) or BRAF(V600E), and identified highly specific nucleases that edited the oncogenic allele but left the respective WT loci intact, which we validated by PCR amplicon sequencing. Next, we intravenously injected an AAV library engineered to encode its own capsid DNA into mice harboring patient-derived xenograft tumors driven by H3(K27M) or BRAF(V600E). After 21 days, we resected neoplasms and separated mCherry-labeled tumor cells from normal surrounding cells by fluorescence-activated cell sorting. Using the DNA from tumor cells as template, we generated a second AAV library, which was utilized in another round of in vivo selection. At the end of each screen, DNA from tumor cells, surrounding cells, and control tissues (liver and spleen) was analyzed by amplicon sequencing. Strikingly, we identified multiple AAV variants that were highly and recurrently enriched in the analyzed tumor tissues. We are currently validating these variants by intravenously injecting selected, GFP-encoding AAVs to tumor-bearing mice and by subsequently analyzing their distribution throughout the aforementioned tissues. We will combine oncogene-specific nucleases with these validated AAV variants and analyze their anti-tumoral efficacy in a preclinical setting. Furthermore, we plan to adapt this approach to allografted mice, evaluating its feasibility and efficacy in syngeneic models. |
format | Online Article Text |
id | pubmed-9165130 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-91651302022-06-05 THER-01. Precision brain tumor therapy by AAV-mediated oncogene editing von Soosten, Laura Haar, Janina Frehtman, Veronika Holderbach, Stefan zu Belzen, Julius Upmeier Jendrusch, Michael Okonechnikov, Konstantin Pfister, Stefan M Grimm, Dirk Leuchs, Barbara Jones, David Kutscher, Lena M Zuckermann, Marc Neuro Oncol Viral/Gene Therapy and other Novel Therapies Pediatric high-grade glioma is a heterogeneous group of highly malignant tumors of the central nervous system, with a median overall survival of less than two years after diagnosis, demanding novel treatment options. One innovative approach is gene therapy, which has so far been hampered for cancer treatment owing to the lack of a system targeting tumor cells specifically. To overcome this limitation, we established a novel strategy for gene therapy, combining tumor cell-specific adeno-associated virus (AAV) variants with oncogene-specific CRISPR-Cas nucleases. We screened 177 different Cas9/gRNA combinations targeting the genes encoding H3(K27M) or BRAF(V600E), and identified highly specific nucleases that edited the oncogenic allele but left the respective WT loci intact, which we validated by PCR amplicon sequencing. Next, we intravenously injected an AAV library engineered to encode its own capsid DNA into mice harboring patient-derived xenograft tumors driven by H3(K27M) or BRAF(V600E). After 21 days, we resected neoplasms and separated mCherry-labeled tumor cells from normal surrounding cells by fluorescence-activated cell sorting. Using the DNA from tumor cells as template, we generated a second AAV library, which was utilized in another round of in vivo selection. At the end of each screen, DNA from tumor cells, surrounding cells, and control tissues (liver and spleen) was analyzed by amplicon sequencing. Strikingly, we identified multiple AAV variants that were highly and recurrently enriched in the analyzed tumor tissues. We are currently validating these variants by intravenously injecting selected, GFP-encoding AAVs to tumor-bearing mice and by subsequently analyzing their distribution throughout the aforementioned tissues. We will combine oncogene-specific nucleases with these validated AAV variants and analyze their anti-tumoral efficacy in a preclinical setting. Furthermore, we plan to adapt this approach to allografted mice, evaluating its feasibility and efficacy in syngeneic models. Oxford University Press 2022-06-03 /pmc/articles/PMC9165130/ http://dx.doi.org/10.1093/neuonc/noac079.695 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Viral/Gene Therapy and other Novel Therapies von Soosten, Laura Haar, Janina Frehtman, Veronika Holderbach, Stefan zu Belzen, Julius Upmeier Jendrusch, Michael Okonechnikov, Konstantin Pfister, Stefan M Grimm, Dirk Leuchs, Barbara Jones, David Kutscher, Lena M Zuckermann, Marc THER-01. Precision brain tumor therapy by AAV-mediated oncogene editing |
title | THER-01. Precision brain tumor therapy by AAV-mediated oncogene editing |
title_full | THER-01. Precision brain tumor therapy by AAV-mediated oncogene editing |
title_fullStr | THER-01. Precision brain tumor therapy by AAV-mediated oncogene editing |
title_full_unstemmed | THER-01. Precision brain tumor therapy by AAV-mediated oncogene editing |
title_short | THER-01. Precision brain tumor therapy by AAV-mediated oncogene editing |
title_sort | ther-01. precision brain tumor therapy by aav-mediated oncogene editing |
topic | Viral/Gene Therapy and other Novel Therapies |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9165130/ http://dx.doi.org/10.1093/neuonc/noac079.695 |
work_keys_str_mv | AT vonsoostenlaura ther01precisionbraintumortherapybyaavmediatedoncogeneediting AT haarjanina ther01precisionbraintumortherapybyaavmediatedoncogeneediting AT frehtmanveronika ther01precisionbraintumortherapybyaavmediatedoncogeneediting AT holderbachstefan ther01precisionbraintumortherapybyaavmediatedoncogeneediting AT zubelzenjuliusupmeier ther01precisionbraintumortherapybyaavmediatedoncogeneediting AT jendruschmichael ther01precisionbraintumortherapybyaavmediatedoncogeneediting AT okonechnikovkonstantin ther01precisionbraintumortherapybyaavmediatedoncogeneediting AT pfisterstefanm ther01precisionbraintumortherapybyaavmediatedoncogeneediting AT grimmdirk ther01precisionbraintumortherapybyaavmediatedoncogeneediting AT leuchsbarbara ther01precisionbraintumortherapybyaavmediatedoncogeneediting AT jonesdavid ther01precisionbraintumortherapybyaavmediatedoncogeneediting AT kutscherlenam ther01precisionbraintumortherapybyaavmediatedoncogeneediting AT zuckermannmarc ther01precisionbraintumortherapybyaavmediatedoncogeneediting |