Cargando…
Bayesian graphical models for modern biological applications
Graphical models are powerful tools that are regularly used to investigate complex dependence structures in high-throughput biomedical datasets. They allow for holistic, systems-level view of the various biological processes, for intuitive and rigorous understanding and interpretations. In the conte...
Autores principales: | Ni, Yang, Baladandayuthapani, Veerabhadran, Vannucci, Marina, Stingo, Francesco C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9165295/ https://www.ncbi.nlm.nih.gov/pubmed/35673326 http://dx.doi.org/10.1007/s10260-021-00572-8 |
Ejemplares similares
-
Bayesian Covariate-Dependent Gaussian Graphical Models with Varying Structure
por: Ni, Yang, et al.
Publicado: (2022) -
Integrative Bayesian Network Analysis of Genomic Data
por: Ni, Yang, et al.
Publicado: (2014) -
Bayesian variable selection with graphical structure learning: Applications in integrative genomics
por: Kundu, Suprateek, et al.
Publicado: (2018) -
Bayesian graphical models for computational network biology
por: Ni, Yang, et al.
Publicado: (2018) -
Bayesian Disease Classification Using Copy Number Data
por: Guha, Subharup, et al.
Publicado: (2014)