Cargando…

Astrocyte polarization in glaucoma: a new opportunity

Astrocyte polarization is a new concept which is similar to microglia polarization and in which astrocytes are classified as A1 (neurotoxic) and A2 (neuroprotective). Several studies on astrocyte polarization have focused mainly on neurodegenerative diseases, trauma, and infections. However, the rol...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yi-Xin, Sun, Hao, Guo, Wen-Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer - Medknow 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9165360/
https://www.ncbi.nlm.nih.gov/pubmed/35662185
http://dx.doi.org/10.4103/1673-5374.339470
_version_ 1784720377414418432
author Liu, Yi-Xin
Sun, Hao
Guo, Wen-Yi
author_facet Liu, Yi-Xin
Sun, Hao
Guo, Wen-Yi
author_sort Liu, Yi-Xin
collection PubMed
description Astrocyte polarization is a new concept which is similar to microglia polarization and in which astrocytes are classified as A1 (neurotoxic) and A2 (neuroprotective). Several studies on astrocyte polarization have focused mainly on neurodegenerative diseases, trauma, and infections. However, the role of astrocyte polarization in glaucoma, a neurodegenerative disease, has not been fully explored. In this review, we first describe the characteristics of astrocyte astrogliosis in glaucoma, including morphological, molecular, proliferative and functional changes. We then summarize understanding of astrocyte polarization in other diseases, and show that A1 astrocytes are involved in the death of retinal ganglion cells in glaucoma, and that their neurotoxins kill only damaged retinal ganglion cells. Based on this, we propose new interesting conjecture on astrocyte polarization in glaucoma: (1) That the neurotoxin from A1 astrocytes is a product of the complement system (membrane-attacking complex), since this system is known to mediate synaptic elimination and the C3 expression is clearly increased in A1 astrocytes; (2) that reactive scar-forming astrocytes in the optic nerve head may be classified as A2 astrocytes since their ablation leads to a worse prognosis in glaucoma. Finally, current therapeutic research progress on astrocyte polarization in other diseases is also addressed. Regulation of astrocyte polarization can be achieved by extracellular microglia-related and intracellular pathways. Reduced A1 or increased A2 astrocytes can rescue the nerve. For example, glucagon-like peptide-1 receptor agonist rescues retinal ganglion cells by reducing A1 astrocytes via the extracellular microglia-related pathway in an ocular hypertension model, suggesting that regulation of astrocyte polarization as a therapeutic target in glaucoma is feasible.
format Online
Article
Text
id pubmed-9165360
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Wolters Kluwer - Medknow
record_format MEDLINE/PubMed
spelling pubmed-91653602022-06-05 Astrocyte polarization in glaucoma: a new opportunity Liu, Yi-Xin Sun, Hao Guo, Wen-Yi Neural Regen Res Review Astrocyte polarization is a new concept which is similar to microglia polarization and in which astrocytes are classified as A1 (neurotoxic) and A2 (neuroprotective). Several studies on astrocyte polarization have focused mainly on neurodegenerative diseases, trauma, and infections. However, the role of astrocyte polarization in glaucoma, a neurodegenerative disease, has not been fully explored. In this review, we first describe the characteristics of astrocyte astrogliosis in glaucoma, including morphological, molecular, proliferative and functional changes. We then summarize understanding of astrocyte polarization in other diseases, and show that A1 astrocytes are involved in the death of retinal ganglion cells in glaucoma, and that their neurotoxins kill only damaged retinal ganglion cells. Based on this, we propose new interesting conjecture on astrocyte polarization in glaucoma: (1) That the neurotoxin from A1 astrocytes is a product of the complement system (membrane-attacking complex), since this system is known to mediate synaptic elimination and the C3 expression is clearly increased in A1 astrocytes; (2) that reactive scar-forming astrocytes in the optic nerve head may be classified as A2 astrocytes since their ablation leads to a worse prognosis in glaucoma. Finally, current therapeutic research progress on astrocyte polarization in other diseases is also addressed. Regulation of astrocyte polarization can be achieved by extracellular microglia-related and intracellular pathways. Reduced A1 or increased A2 astrocytes can rescue the nerve. For example, glucagon-like peptide-1 receptor agonist rescues retinal ganglion cells by reducing A1 astrocytes via the extracellular microglia-related pathway in an ocular hypertension model, suggesting that regulation of astrocyte polarization as a therapeutic target in glaucoma is feasible. Wolters Kluwer - Medknow 2022-04-29 /pmc/articles/PMC9165360/ /pubmed/35662185 http://dx.doi.org/10.4103/1673-5374.339470 Text en Copyright: © Neural Regeneration Research https://creativecommons.org/licenses/by-nc-sa/4.0/This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
spellingShingle Review
Liu, Yi-Xin
Sun, Hao
Guo, Wen-Yi
Astrocyte polarization in glaucoma: a new opportunity
title Astrocyte polarization in glaucoma: a new opportunity
title_full Astrocyte polarization in glaucoma: a new opportunity
title_fullStr Astrocyte polarization in glaucoma: a new opportunity
title_full_unstemmed Astrocyte polarization in glaucoma: a new opportunity
title_short Astrocyte polarization in glaucoma: a new opportunity
title_sort astrocyte polarization in glaucoma: a new opportunity
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9165360/
https://www.ncbi.nlm.nih.gov/pubmed/35662185
http://dx.doi.org/10.4103/1673-5374.339470
work_keys_str_mv AT liuyixin astrocytepolarizationinglaucomaanewopportunity
AT sunhao astrocytepolarizationinglaucomaanewopportunity
AT guowenyi astrocytepolarizationinglaucomaanewopportunity