Cargando…
Closo‐Borate Gel Polymer Electrolyte with Remarkable Electrochemical Stability and a Wide Operating Temperature Window
A major challenge in the pursuit of higher‐energy‐density lithium batteries for carbon‐neutral‐mobility is electrolyte compatibility with a lithium metal electrode. This study demonstrates the robust and stable nature of a closo‐borate based gel polymer electrolyte (GPE), which enables outstanding e...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9165492/ https://www.ncbi.nlm.nih.gov/pubmed/35393776 http://dx.doi.org/10.1002/advs.202106032 |
_version_ | 1784720406806003712 |
---|---|
author | Green, Matthew Kaydanik, Katty Orozco, Miguel Hanna, Lauren Marple, Maxwell A. T. Fessler, Kimberly Alicia Strange Jones, Willis B. Stavila, Vitalie Ward, Patrick A. Teprovich, Joseph A. |
author_facet | Green, Matthew Kaydanik, Katty Orozco, Miguel Hanna, Lauren Marple, Maxwell A. T. Fessler, Kimberly Alicia Strange Jones, Willis B. Stavila, Vitalie Ward, Patrick A. Teprovich, Joseph A. |
author_sort | Green, Matthew |
collection | PubMed |
description | A major challenge in the pursuit of higher‐energy‐density lithium batteries for carbon‐neutral‐mobility is electrolyte compatibility with a lithium metal electrode. This study demonstrates the robust and stable nature of a closo‐borate based gel polymer electrolyte (GPE), which enables outstanding electrochemical stability and capacity retention upon extensive cycling. The GPE developed herein has an ionic conductivity of 7.3 × 10(−4) S cm(−2) at room temperature and stability over a wide temperature range from −35 to 80 °C with a high lithium transference number ([Formula: see text] = 0.51). Multinuclear nuclear magnetic resonance and Fourier transform infrared are used to understand the solvation environment and interaction between the GPE components. Density functional theory calculations are leveraged to gain additional insight into the coordination environment and support spectroscopic interpretations. The GPE is also established to be a suitable electrolyte for extended cycling with four different active electrode materials when paired with a lithium metal electrode. The GPE can also be incorporated into a flexible battery that is capable of being cut and still functional. The incorporation of a closo‐borate into a gel polymer matrix represents a new direction for enhancing the electrochemical and physical properties of this class of materials. |
format | Online Article Text |
id | pubmed-9165492 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-91654922022-06-04 Closo‐Borate Gel Polymer Electrolyte with Remarkable Electrochemical Stability and a Wide Operating Temperature Window Green, Matthew Kaydanik, Katty Orozco, Miguel Hanna, Lauren Marple, Maxwell A. T. Fessler, Kimberly Alicia Strange Jones, Willis B. Stavila, Vitalie Ward, Patrick A. Teprovich, Joseph A. Adv Sci (Weinh) Research Articles A major challenge in the pursuit of higher‐energy‐density lithium batteries for carbon‐neutral‐mobility is electrolyte compatibility with a lithium metal electrode. This study demonstrates the robust and stable nature of a closo‐borate based gel polymer electrolyte (GPE), which enables outstanding electrochemical stability and capacity retention upon extensive cycling. The GPE developed herein has an ionic conductivity of 7.3 × 10(−4) S cm(−2) at room temperature and stability over a wide temperature range from −35 to 80 °C with a high lithium transference number ([Formula: see text] = 0.51). Multinuclear nuclear magnetic resonance and Fourier transform infrared are used to understand the solvation environment and interaction between the GPE components. Density functional theory calculations are leveraged to gain additional insight into the coordination environment and support spectroscopic interpretations. The GPE is also established to be a suitable electrolyte for extended cycling with four different active electrode materials when paired with a lithium metal electrode. The GPE can also be incorporated into a flexible battery that is capable of being cut and still functional. The incorporation of a closo‐borate into a gel polymer matrix represents a new direction for enhancing the electrochemical and physical properties of this class of materials. John Wiley and Sons Inc. 2022-04-07 /pmc/articles/PMC9165492/ /pubmed/35393776 http://dx.doi.org/10.1002/advs.202106032 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Green, Matthew Kaydanik, Katty Orozco, Miguel Hanna, Lauren Marple, Maxwell A. T. Fessler, Kimberly Alicia Strange Jones, Willis B. Stavila, Vitalie Ward, Patrick A. Teprovich, Joseph A. Closo‐Borate Gel Polymer Electrolyte with Remarkable Electrochemical Stability and a Wide Operating Temperature Window |
title |
Closo‐Borate Gel Polymer Electrolyte with Remarkable Electrochemical Stability and a Wide Operating Temperature Window |
title_full |
Closo‐Borate Gel Polymer Electrolyte with Remarkable Electrochemical Stability and a Wide Operating Temperature Window |
title_fullStr |
Closo‐Borate Gel Polymer Electrolyte with Remarkable Electrochemical Stability and a Wide Operating Temperature Window |
title_full_unstemmed |
Closo‐Borate Gel Polymer Electrolyte with Remarkable Electrochemical Stability and a Wide Operating Temperature Window |
title_short |
Closo‐Borate Gel Polymer Electrolyte with Remarkable Electrochemical Stability and a Wide Operating Temperature Window |
title_sort | closo‐borate gel polymer electrolyte with remarkable electrochemical stability and a wide operating temperature window |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9165492/ https://www.ncbi.nlm.nih.gov/pubmed/35393776 http://dx.doi.org/10.1002/advs.202106032 |
work_keys_str_mv | AT greenmatthew closoborategelpolymerelectrolytewithremarkableelectrochemicalstabilityandawideoperatingtemperaturewindow AT kaydanikkatty closoborategelpolymerelectrolytewithremarkableelectrochemicalstabilityandawideoperatingtemperaturewindow AT orozcomiguel closoborategelpolymerelectrolytewithremarkableelectrochemicalstabilityandawideoperatingtemperaturewindow AT hannalauren closoborategelpolymerelectrolytewithremarkableelectrochemicalstabilityandawideoperatingtemperaturewindow AT marplemaxwellat closoborategelpolymerelectrolytewithremarkableelectrochemicalstabilityandawideoperatingtemperaturewindow AT fesslerkimberlyaliciastrange closoborategelpolymerelectrolytewithremarkableelectrochemicalstabilityandawideoperatingtemperaturewindow AT joneswillisb closoborategelpolymerelectrolytewithremarkableelectrochemicalstabilityandawideoperatingtemperaturewindow AT stavilavitalie closoborategelpolymerelectrolytewithremarkableelectrochemicalstabilityandawideoperatingtemperaturewindow AT wardpatricka closoborategelpolymerelectrolytewithremarkableelectrochemicalstabilityandawideoperatingtemperaturewindow AT teprovichjosepha closoborategelpolymerelectrolytewithremarkableelectrochemicalstabilityandawideoperatingtemperaturewindow |